-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRun_Model.py
62 lines (51 loc) · 1.87 KB
/
Run_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os
# 可调参数,建议在文本生成时设置为较高值
TOP_P = 0.9 # Top-p (nucleus sampling),范围0到1
TOP_K = 80 # Top-k 采样的K值
TEMPERATURE = 0.3 # 温度参数,控制生成文本的随机性
device = "cuda" if torch.cuda.is_available() else "cpu"
# 获取当前脚本目录,亦可改为绝对路径
current_directory = os.path.dirname(os.path.abspath(__file__))
# 加载模型和分词器
model = AutoModelForCausalLM.from_pretrained(
current_directory,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(current_directory)
# 系统指令(建议为空)
messages = [
{"role": "system", "content": ""}
]
while True:
# 获取用户输入
user_input = input("User: ").strip()
# 添加用户输入到对话
messages.append({"role": "user", "content": user_input})
# 准备输入文本
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
# 生成响应
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512,
top_p=TOP_P,
top_k=TOP_K,
temperature=TEMPERATURE,
do_sample=True,
pad_token_id=tokenizer.eos_token_id # 避免警告
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
# 解码并打印响应
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(f"Assistant: {response}")
# 将生成的响应添加到对话中
messages.append({"role": "assistant", "content": response})