-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathdata_loader.py
76 lines (57 loc) · 2.34 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -*- coding: utf-8 -*-
import sys
import torch
import torch.autograd as autograd
import codecs
import random
import torch.utils.data as Data
SEED = 1
# input: a sequence of tokens, and a token_to_index dictionary
# output: a LongTensor variable to encode the sequence of idxs
def prepare_sequence(seq, to_ix, cuda=False):
var = autograd.Variable(torch.LongTensor([to_ix[w] for w in seq.split(' ')]))
return var
def prepare_label(label,label_to_ix, cuda=False):
var = autograd.Variable(torch.LongTensor([label_to_ix[label]]))
return var
def build_token_to_ix(sentences):
token_to_ix = dict()
print(len(sentences))
for sent in sentences:
for token in sent.split(' '):
if token not in token_to_ix:
token_to_ix[token] = len(token_to_ix)
token_to_ix['<pad>'] = len(token_to_ix)
return token_to_ix
def build_label_to_ix(labels):
label_to_ix = dict()
for label in labels:
if label not in label_to_ix:
label_to_ix[label] = len(label_to_ix)
def load_MR_data():
# already tokenized and there is no standard split
# the size follow the Mou et al. 2016 instead
file_pos = './datasets/MR/rt-polarity.pos'
file_neg = './datasets/MR/rt-polarity.neg'
print('loading MR data from',file_pos,'and',file_neg)
pos_sents = codecs.open(file_pos, 'r', 'utf8').read().split('\n')
neg_sents = codecs.open(file_neg, 'r', 'utf8').read().split('\n')
random.seed(SEED)
random.shuffle(pos_sents)
random.shuffle(neg_sents)
# print(len(pos_sents))
# print(len(neg_sents))
train_data = [(sent,1) for sent in pos_sents[:4250]] + [(sent, 0) for sent in neg_sents[:4250]]
dev_data = [(sent, 1) for sent in pos_sents[4250:4800]] + [(sent, 0) for sent in neg_sents[4250:4800]]
test_data = [(sent, 1) for sent in pos_sents[4800:]] + [(sent, 0) for sent in neg_sents[4800:]]
random.shuffle(train_data)
random.shuffle(dev_data)
random.shuffle(test_data)
print('train:',len(train_data),'dev:',len(dev_data),'test:',len(test_data))
word_to_ix = build_token_to_ix([s for s,_ in train_data+dev_data+test_data])
label_to_ix = {0:0,1:1}
print('vocab size:',len(word_to_ix),'label size:',len(label_to_ix))
print('loading data done!')
return train_data,dev_data,test_data,word_to_ix,label_to_ix
def load_MR_data_batch():
pass