-
Notifications
You must be signed in to change notification settings - Fork 1
/
AdAM_importance_probing.py
600 lines (467 loc) · 22.6 KB
/
AdAM_importance_probing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
import argparse
from cgi import test
import math
import random
import os
import numpy as np
import torch
from torch import nn, autograd, optim
from torch.nn import functional as F
from torch.utils import data
import torch.distributed as dist
from torchvision import transforms
from tqdm import tqdm
from copy import deepcopy
from collections import OrderedDict
import pickle
from gan_training import utils
from gan_training.eval import Evaluator
from gan_training.utils_model_load import *
# record and visualize the statistics
try:
import wandb
except ImportError:
wandb = None
from gan_training.models.model_adam import Generator as Generator
from gan_training.models.model_adam import Discriminator as Discriminator
from dataset import MultiResolutionDataset
from distributed import (
get_rank,
synchronize,
reduce_loss_dict,
reduce_sum,
get_world_size,
)
from non_leaking import augment
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2 ** 32
np.random.seed(worker_seed)
random.seed(worker_seed)
def data_sampler(dataset, shuffle, distributed):
if distributed:
return data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return data.RandomSampler(dataset)
else:
return data.SequentialSampler(dataset)
def requires_grad(model, flag=True):
for name, p in model.named_parameters():
p.requires_grad = flag
def accumulate(model1, model2, decay=0.999):
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(par2[k].data, alpha=1 - decay)
def sample_data(loader):
while True:
for batch in loader:
yield batch
def d_logistic_loss(real_pred, fake_pred):
real_loss = F.softplus(-real_pred)
fake_loss = F.softplus(fake_pred)
return real_loss.mean() + fake_loss.mean()
def d_r1_loss(real_pred, real_img):
grad_real, = autograd.grad(
outputs=real_pred.sum(), inputs=real_img, create_graph=True
)
grad_penalty = grad_real.pow(2).reshape(
grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def g_nonsaturating_loss(fake_pred):
loss = F.softplus(-fake_pred).mean()
return loss
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
noise = torch.randn_like(fake_img) / math.sqrt(
fake_img.shape[2] * fake_img.shape[3]
)
grad, = autograd.grad(
outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True,
)
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
path_mean = mean_path_length + decay * \
(path_lengths.mean() - mean_path_length)
path_penalty = (path_lengths - path_mean).pow(2).mean()
return path_penalty, path_mean.detach(), path_lengths
def make_noise(batch, latent_dim, n_noise, device):
if n_noise == 1:
return torch.randn(batch, latent_dim, device=device)
noises = torch.randn(n_noise, batch, latent_dim, device=device).unbind(0)
return noises
def mixing_noise(batch, latent_dim, prob, device):
if prob > 0 and random.random() < prob:
return make_noise(batch, latent_dim, 2, device)
else:
return [make_noise(batch, latent_dim, 1, device)]
def get_subspace(args, init_z, vis_flag=False):
std = args.subspace_std
bs = args.batch if not vis_flag else args.n_sample_store
ind = np.random.randint(0, init_z.size(0), size=bs)
z = init_z[ind] # should give a tensor of size [batch_size, 512]
for i in range(z.size(0)):
for j in range(z.size(1)):
z[i][j].data.normal_(z[i][j], std)
return z
def calculate_fisher(args, train_loader, generator, discriminator, g_optim, d_optim, g_ema, d_ema, device):
pbar = range(args.fisher_iter+5)
if get_rank() == 0:
pbar = tqdm(pbar, initial=0,
dynamic_ncols=True, smoothing=0.01)
mean_path_length = 0
d_loss_val = 0
r1_loss = torch.tensor(0.0, device=device)
g_loss_val = 0
path_loss = torch.tensor(0.0, device=device)
path_lengths = torch.tensor(0.0, device=device)
mean_path_length_avg = 0
loss_dict = {}
g_module = generator
d_module = discriminator
g_ema_module = g_ema.module
d_ema_module = d_ema.module
accum = 0.5 ** (32 / (10 * 1000)) ##
ada_augment = torch.tensor([0.0, 0.0], device=device) ## non-leaking augmentation
ada_aug_p = args.augment_p if args.augment_p > 0 else 0.0
ada_aug_step = args.ada_target / args.ada_length
r_t_stat = 0
for idx in pbar:
i = idx
# --------------- --------------- ----------------- #
# --------------- --------------- ----------------- #
# --------------- estimate fisher ----------------- #
if (i % args.fisher_freq == 0) and i>0:
requires_grad(g_ema, True)
requires_grad(d_ema, True)
g_ema.eval()
d_ema.eval()
# init fisher dict
filter_grad_g = dict()
filter_fisher_g = dict()
filter_grad_d = dict()
filter_fisher_d = dict()
print("entering evaluation of fisher information...")
for j in tqdm(range(args.num_batch_fisher)): # for each iteration, we read 4 noise input but calculate FIM one-by-one
# 0) load a batch of noise and real image, and compute FIM image by image
noise_fisher = torch.load(f'./_noise/{str(j).zfill(4)}.pt').cuda()
real_img_fisher = next(train_loader).to(device)
for fisher_idx in range((noise_fisher.size()[0])):
g_ema.zero_grad()
d_ema.zero_grad()
# 1)
# Obtain predicted results
fake_img_fisher, _ = g_ema([(noise_fisher.data)[fisher_idx].view(1,-1)])
batch_1_real_img = (real_img_fisher.data)[fisher_idx].view(1,3,256,256)
fake_pred_fisher, _ = d_ema(fake_img_fisher)
real_pred_fisher, _ = d_ema(batch_1_real_img)
# Obtain generator loss/discriminator loss of a single fake/real image
g_loss_fisher = g_nonsaturating_loss(fake_pred_fisher)
d_loss_fisher = d_logistic_loss(real_pred_fisher, fake_pred_fisher)
# 2) Estimate the fisher information and grad of each parameter
g_grads, est_fisher_info_g = g_ema_module.estimate_fisher(loglikelihood=g_loss_fisher)
d_grads, est_fisher_info_d = d_ema_module.estimate_fisher(loglikelihood=d_loss_fisher)
# Grad
# store grad for G
for k, (n, p) in enumerate(g_ema_module.named_parameters()):
if p.requires_grad:
if g_grads[k] is not None:
if j == 0 and fisher_idx == 0:
filter_grad_g[n] = g_grads[k].detach()
else:
filter_grad_g[n] += g_grads[k].detach()
# store grad for D
for k, (n, p) in enumerate(d_ema_module.named_parameters()):
if p.requires_grad:
if d_grads[k] is not None:
if j == 0 and fisher_idx == 0:
filter_grad_d[n] = d_grads[k].detach()
else:
filter_grad_d[n] += d_grads[k].detach()
# FIM
# Record filter-level FIM in G
for key in est_fisher_info_g:
if j == 0 and fisher_idx == 0:
filter_fisher_g[key] = est_fisher_info_g[key].detach().cpu().numpy()
else:
filter_fisher_g[key] += est_fisher_info_g[key].detach().cpu().numpy()
# Record filter-level FIM in D
for key in est_fisher_info_d:
if j == 0 and fisher_idx == 0:
filter_fisher_d[key] = est_fisher_info_d[key].detach().cpu().numpy()
else:
filter_fisher_d[key] += est_fisher_info_d[key].detach().cpu().numpy()
# avg
for key in filter_grad_g:
filter_grad_g[key] /= (args.num_batch_fisher * args.batch)
for key in filter_grad_d:
filter_grad_d[key] /= (args.num_batch_fisher * args.batch)
for key in filter_fisher_g:
filter_fisher_g[key] /= (args.num_batch_fisher * args.batch)
for key in filter_fisher_d:
filter_fisher_d[key] /= (args.num_batch_fisher * args.batch)
torch.save(filter_grad_g, os.path.join(args.checkpoint_dir, "filter_grad_g.pt"))
torch.save(filter_fisher_g, os.path.join(args.checkpoint_dir, "filter_fisher_g.pt"))
torch.save(filter_grad_d, os.path.join(args.checkpoint_dir, "filter_grad_d.pt"))
torch.save(filter_fisher_d, os.path.join(args.checkpoint_dir, "filter_fisher_d.pt"))
# --------------- estimate fisher ----------------- #
# --------------- --------------- ----------------- #
# --------------- --------------- ----------------- #
real_img = next(train_loader)
real_img = real_img.to(device)
noise = mixing_noise(args.batch, args.latent, args.mixing, device)
fake_img, _ = generator(noise)
if args.augment:
real_img, _ = augment(real_img, ada_aug_p)
fake_img, _ = augment(fake_img, ada_aug_p)
fake_pred, _ = discriminator(
fake_img)
real_pred, _ = discriminator(
real_img)
d_loss = d_logistic_loss(real_pred, fake_pred)
loss_dict["d"] = d_loss
loss_dict["real_score"] = real_pred.mean()
loss_dict["fake_score"] = fake_pred.mean()
# only update D
discriminator.zero_grad()
d_loss.backward()
d_optim.step()
if args.augment and args.augment_p == 0:
ada_augment += torch.tensor(
(torch.sign(real_pred).sum().item(), real_pred.shape[0]), device=device
)
ada_augment = reduce_sum(ada_augment)
if ada_augment[1] > 255:
pred_signs, n_pred = ada_augment.tolist()
r_t_stat = pred_signs / n_pred
if r_t_stat > args.ada_target:
sign = 1
else:
sign = -1
ada_aug_p += sign * ada_aug_step * n_pred
ada_aug_p = min(1, max(0, ada_aug_p))
ada_augment.mul_(0)
# using r1_loss to regularize the D, for every 16 iterations
d_regularize = i % args.d_reg_every == 0
if d_regularize:
real_img.requires_grad = True
real_pred, _ = discriminator(
real_img)
real_pred = real_pred.view(real_img.size(0), -1)
real_pred = real_pred.mean(dim=1).unsqueeze(1)
r1_loss = d_r1_loss(real_pred, real_img)
discriminator.zero_grad()
(args.r1 / 2 * r1_loss * args.d_reg_every +
0 * real_pred[0]).backward()
d_optim.step()
loss_dict["r1"] = r1_loss
noise = mixing_noise(args.batch, args.latent, args.mixing, device)
fake_img, _ = generator(noise)
if args.augment:
fake_img, _ = augment(fake_img, ada_aug_p)
fake_pred, _ = discriminator(
fake_img)
g_loss = g_nonsaturating_loss(fake_pred)
g_loss = g_loss
loss_dict["g"] = g_loss
# only update G
generator.zero_grad()
g_loss.backward()
g_optim.step()
g_regularize = i % args.g_reg_every == 0
# to save up space
del g_loss, d_loss, fake_img, fake_pred, real_img, real_pred
if g_regularize:
path_batch_size = max(1, args.batch // args.path_batch_shrink)
noise = mixing_noise(
path_batch_size, args.latent, args.mixing, device)
fake_img, latents = generator(noise, return_latents=True)
path_loss, mean_path_length, path_lengths = g_path_regularize(
fake_img, latents, mean_path_length
)
generator.zero_grad()
weighted_path_loss = args.path_regularize * args.g_reg_every * path_loss
if args.path_batch_shrink:
weighted_path_loss += 0 * fake_img[0, 0, 0, 0]
weighted_path_loss.backward()
g_optim.step()
mean_path_length_avg = (
reduce_sum(mean_path_length).item() / get_world_size()
)
loss_dict["path"] = path_loss
loss_dict["path_length"] = path_lengths.mean()
loss_reduced = reduce_loss_dict(loss_dict)
d_loss_val = loss_reduced["d"].mean().item()
g_loss_val = loss_reduced["g"].mean().item()
r1_val = loss_reduced["r1"].mean().item()
path_loss_val = loss_reduced["path"].mean().item()
real_score_val = loss_reduced["real_score"].mean().item()
fake_score_val = loss_reduced["fake_score"].mean().item()
path_length_val = loss_reduced["path_length"].mean().item()
if get_rank() == 0:
pbar.set_description(
(
f"d: {d_loss_val:.4f}; g: {g_loss_val:.4f}; r1: {r1_val:.4f}; "
f"path: {path_loss_val:.4f}; mean path: {mean_path_length_avg:.4f}; "
f"augment: {ada_aug_p:.4f}"
)
)
# 4) update ema GAN
accumulate(g_ema_module, g_module, accum) # store the moving average parameters in g_ema
accumulate(d_ema_module, d_module.module, accum) # store the moving average parameters in d_ema
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--exp", type=str, default='tmp')
parser.add_argument("--data_path", type=str, default='babies')
parser.add_argument("--iter", type=int, default=1001)
parser.add_argument("--batch", type=int, default=4)
parser.add_argument("--size", type=int, default=256, help="size of the img, must be square")
parser.add_argument("--feat_res", type=int, default=128)
parser.add_argument("--r1", type=float, default=10)
parser.add_argument("--path_regularize", type=float, default=2)
parser.add_argument("--path_batch_shrink", type=int, default=2)
parser.add_argument("--d_reg_every", type=int, default=16)
parser.add_argument("--g_reg_every", type=int, default=4)
parser.add_argument("--mixing", type=float, default=0.9)
parser.add_argument("--subspace_std", type=float, default=0.05)
parser.add_argument("--ckpt_source", type=str, default="style_gan_source_ffhq.pt", help="pretrained model")
parser.add_argument("--source_key", type=str, default='ffhq')
parser.add_argument("--lr", type=float, default=0.002)
parser.add_argument("--channel_multiplier", type=int, default=2)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--augment", dest='augment', action='store_true')
parser.add_argument("--no-augment", dest='augment', action='store_false')
parser.add_argument("--augment_p", type=float, default=0.0)
parser.add_argument("--ada_target", type=float, default=0.6)
parser.add_argument("--ada_length", type=int, default=500 * 1000)
parser.add_argument("--n_sample_train", type=int, default=10)
parser.add_argument("--n_sample_test", type=int, default=5000)
parser.add_argument("--num_batch_fisher", type=int, default=5)
parser.add_argument("--fisher_freq", type=int, default=10)
parser.add_argument("--fisher_iter", type=int, default=10)
args = parser.parse_args()
torch.manual_seed(1)
random.seed(1)
np.random.seed(1)
# --------------------------------- #
# Step 1. Pre-experiment setups
# --------------------------------- #
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if get_rank() == 0:
print("Basic setups:", '\n', args)
args.output_path = os.path.join('./_output_style_gan/', args.exp)
args.checkpoint_dir = os.path.join('./_output_style_gan/', args.exp, 'checkpoints')
# Create missing directories
if not os.path.exists(args.output_path):
os.makedirs(args.output_path, exist_ok=True)
if not os.path.exists(args.checkpoint_dir):
os.makedirs(args.checkpoint_dir, exist_ok=True)
args.latent = 512
args.n_mlp = 8
args.start_iter = 0
## ------------------------- Modulate all blocks for estimating FIM ---------------------------- ##
# initialize the models using style_gan2, with KML Module
generator = Generator(args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier).to(device)
g_ema = Generator(args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier).to(device)
discriminator = Discriminator(args.size, channel_multiplier=args.channel_multiplier).to(device)
d_ema = Discriminator(args.size, channel_multiplier=args.channel_multiplier).to(device)
g_dict = generator.state_dict()
d_dict = discriminator.state_dict()
if args.ckpt_source is not None:
ckpt_source_path = os.path.join("./_pretrained/", args.ckpt_source)
print("load model:", args.ckpt_source)
assert args.source_key in args.ckpt_source
ckpt_source = torch.load(ckpt_source_path, map_location=lambda storage, loc: storage)
generator.load_state_dict(ckpt_source["g"], strict=False)
g_ema.load_state_dict(ckpt_source["g_ema"], strict=False)
discriminator.load_state_dict(ckpt_source["d"], strict=False)
d_ema.load_state_dict(ckpt_source["d"], strict=False)
# trainable parameters in G
for name, param in generator.named_parameters():
if name.find('u_vector') >= 0:
param.requires_grad = True
elif name.find('v_vector') >= 0:
param.requires_grad = True
elif name.find('b_vector') >= 0:
param.requires_grad = True
else:
param.requires_grad = False
# key-words of trainable parameters in D
d_fine_tune = ['final', 'u_vector', 'v_vector', 'b_vector']
for name, param in discriminator.named_parameters():
d_flag = 0
for key in d_fine_tune:
if key in name:
param.requires_grad = True
d_flag += 1
if d_flag == 0:
param.requires_grad = False
# print the number of trainable parameters
get_parameter_number(generator, name=f'Generator-fisher')
get_parameter_number(discriminator, name=f'Discriminator-fisher')
## final generated results
g_ema.eval()
d_ema.eval()
g_reg_ratio = args.g_reg_every / (args.g_reg_every + 1)
d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
g_optim = optim.Adam(
generator.parameters(),
lr=args.lr * g_reg_ratio,
betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),
)
d_optim = optim.Adam(
discriminator.parameters(),
lr=args.lr * d_reg_ratio,
betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
)
geneator = nn.parallel.DataParallel(generator)
g_ema = nn.parallel.DataParallel(g_ema)
discriminator = nn.parallel.DataParallel(discriminator)
d_ema = nn.parallel.DataParallel(d_ema)
# ----------------------------------------------------------------------- #
# Step 2. pre-process the dataset (resized and binarized into lmdb file)
# ----------------------------------------------------------------------- #
transform = transforms.Compose(
[
transforms.Resize(args.size),
transforms.CenterCrop(args.size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True),
]
)
# define datasets and loaders
data_path_train = os.path.join('./_processed_train', args.data_path) # only for 10-shot
data_path_test = os.path.join('./_processed_test', args.data_path)
if args.n_sample_train <= 10:
train_dataset = MultiResolutionDataset(data_path_train, transform, args.size)
else:
train_dataset = MultiResolutionDataset(data_path_test, transform, args.size)
# few_shot_idx = np.random.randint(0, train_dataset.length, size=args.n_sample_train)
few_shot_idx = np.random.choice(train_dataset.length, size=args.n_sample_train, replace=False)
np.savetxt(f"./{args.output_path}/{args.n_sample_train}-shot-index.txt", few_shot_idx)
train_dataset = data.Subset(train_dataset, indices=few_shot_idx)
print(f"Few-shot transfer with {few_shot_idx.size}-shot images")
train_loader = data.DataLoader(
train_dataset,
batch_size=args.batch,
sampler=data_sampler(train_dataset, shuffle=True, distributed=False),
num_workers=8,
pin_memory=True,
drop_last=True,
)
train_loader = sample_data(train_loader)
# save the args
argsDict = args.__dict__
with open(os.path.join(args.output_path, 'args.txt'), 'w') as f:
f.writelines('------------------ start ------------------' + '\n')
for eachArg, value in argsDict.items():
f.writelines(eachArg + ' : ' + str(value) + '\n')
f.writelines('------------------- end -------------------')
# save the training script
import shutil
my_file = './AdAM_importance_probing.py'
to_file = os.path.join(args.output_path, "./train_script.py")
shutil.copy(str(my_file), str(to_file))
# ----------------------------------------- #
# Step 3. AdAM: Importance Probing
# ----------------------------------------- #
calculate_fisher(args, train_loader, generator, discriminator, g_optim, d_optim, g_ema, d_ema, device)