-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWineQuality.py
69 lines (48 loc) · 1.73 KB
/
WineQuality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 25 01:40:38 2023
@author: Yunus
Data Science Projects @ Great Learning
Prediction on Wine Data
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import metrics
import seaborn as sns
# data import
data = pd.read_csv('wine.data.csv', names = ['Quality','Alcohol','Malic acid','Ash','Alcalinity of ash','Magnesium','Total phenols','Flavanoids','Nonflavanoid phenols','Proanthocyanins','Color intensity','Hue','OD280/OD315 of diluted wines','Proline'])
# data check
data.head(10)
# variable types
data.dtypes
# checking missing values
data.isnull().sum()
# Analyzing data
# The transpose() function is used to transpose index and columns.
data.describe().transpose()
# plot
sns.pairplot(data, diag_kind = 'kde', hue = 'Quality')
# Building Model
# selecting variables
x = data.drop(columns = 'Quality')
y = data['Quality']
from sklearn.model_selection import train_test_split
# splitting data into training and test set
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.30,random_state=1)
from sklearn.naive_bayes import GaussianNB
# NB Gaussian function for the model
# fitting model
model = GaussianNB()
model.fit(x_train,y_train)
# Testing the accuracy of model
model.score(x_test,y_test)
y_pred = model.predict(x_test)
metrics.confusion_matrix(y_test,y_pred)
print(metrics.classification_report(y_test,y_pred))
# K-Fold Cross Validation
from sklearn.model_selection import cross_val_predict
from sklearn.model_selection import cross_val_score
score = cross_val_score(model,x_train,y_train,cv=10)
print('cross validation score : ',score)
print('Average score : ',np.average(score))