-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretrain.py
746 lines (674 loc) · 29.8 KB
/
retrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
from datetime import datetime
import hashlib
import os.path
import random
import re
import struct
import sys
import tarfile
import numpy as np
from six.moves import urllib
import tensorflow as tf
from tensorflow.python.framework import graph_util
from tensorflow.python.framework import tensor_shape
from tensorflow.python.platform import gfile
from tensorflow.python.util import compat
FLAGS = None
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'
BOTTLENECK_TENSOR_SIZE = 2048
MODEL_INPUT_WIDTH = 299
MODEL_INPUT_HEIGHT = 299
MODEL_INPUT_DEPTH = 3
JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'
RESIZED_INPUT_TENSOR_NAME = 'ResizeBilinear:0'
MAX_NUM_IMAGES_PER_CLASS = 2 ** 27 - 1 # ~134M
def create_image_lists(image_dir, testing_percentage, validation_percentage):
if not gfile.Exists(image_dir):
print("Image directory '" + image_dir + "' not found.")
return None
result = {}
sub_dirs = [x[0] for x in gfile.Walk(image_dir)]
# The root directory comes first, so skip it.
is_root_dir = True
for sub_dir in sub_dirs:
if is_root_dir:
is_root_dir = False
continue
extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']
file_list = []
dir_name = os.path.basename(sub_dir)
if dir_name == image_dir:
continue
print("Looking for images in '" + dir_name + "'")
for extension in extensions:
file_glob = os.path.join(image_dir, dir_name, '*.' + extension)
file_list.extend(gfile.Glob(file_glob))
if not file_list:
print('No files found')
continue
if len(file_list) < 20:
print('WARNING: Folder has less than 20 images, which may cause issues.')
elif len(file_list) > MAX_NUM_IMAGES_PER_CLASS:
print('WARNING: Folder {} has more than {} images. Some images will '
'never be selected.'.format(dir_name, MAX_NUM_IMAGES_PER_CLASS))
label_name = re.sub(r'[^a-z0-9]+', ' ', dir_name.lower())
training_images = []
testing_images = []
validation_images = []
for file_name in file_list:
base_name = os.path.basename(file_name)
hash_name = re.sub(r'_nohash_.*$', '', file_name)
hash_name_hashed = hashlib.sha1(compat.as_bytes(hash_name)).hexdigest()
percentage_hash = ((int(hash_name_hashed, 16) %
(MAX_NUM_IMAGES_PER_CLASS + 1)) *
(100.0 / MAX_NUM_IMAGES_PER_CLASS))
if percentage_hash < validation_percentage:
validation_images.append(base_name)
elif percentage_hash < (testing_percentage + validation_percentage):
testing_images.append(base_name)
else:
training_images.append(base_name)
result[label_name] = {
'dir': dir_name,
'training': training_images,
'testing': testing_images,
'validation': validation_images,
}
return result
def get_image_path(image_lists, label_name, index, image_dir, category):
if label_name not in image_lists:
tf.logging.fatal('Label does not exist %s.', label_name)
label_lists = image_lists[label_name]
if category not in label_lists:
tf.logging.fatal('Category does not exist %s.', category)
category_list = label_lists[category]
if not category_list:
tf.logging.fatal('Label %s has no images in the category %s.',
label_name, category)
mod_index = index % len(category_list)
base_name = category_list[mod_index]
sub_dir = label_lists['dir']
full_path = os.path.join(image_dir, sub_dir, base_name)
return full_path
def get_bottleneck_path(image_lists, label_name, index, bottleneck_dir,
category):
return get_image_path(image_lists, label_name, index, bottleneck_dir,
category) + '.txt'
def create_inception_graph():
with tf.Session() as sess:
model_filename = os.path.join(
FLAGS.model_dir, 'classify_image_graph_def.pb')
with gfile.FastGFile(model_filename, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
bottleneck_tensor, jpeg_data_tensor, resized_input_tensor = (
tf.import_graph_def(graph_def, name='', return_elements=[
BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME,
RESIZED_INPUT_TENSOR_NAME]))
return sess.graph, bottleneck_tensor, jpeg_data_tensor, resized_input_tensor
def run_bottleneck_on_image(sess, image_data, image_data_tensor,
bottleneck_tensor):
bottleneck_values = sess.run(
bottleneck_tensor,
{image_data_tensor: image_data})
bottleneck_values = np.squeeze(bottleneck_values)
return bottleneck_values
#下载模型
def maybe_download_and_extract():
dest_directory = FLAGS.model_dir
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' %
(filename,
float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL,
filepath,
_progress)
print()
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
def ensure_dir_exists(dir_name):
if not os.path.exists(dir_name):
os.makedirs(dir_name)
def write_list_of_floats_to_file(list_of_floats , file_path):
s = struct.pack('d' * BOTTLENECK_TENSOR_SIZE, *list_of_floats)
with open(file_path, 'wb') as f:
f.write(s)
def read_list_of_floats_from_file(file_path):
with open(file_path, 'rb') as f:
s = struct.unpack('d' * BOTTLENECK_TENSOR_SIZE, f.read())
return list(s)
bottleneck_path_2_bottleneck_values = {}
def create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
image_dir, category, sess, jpeg_data_tensor, bottleneck_tensor):
print('Creating bottleneck at ' + bottleneck_path)
image_path = get_image_path(image_lists, label_name, index, image_dir, category)
if not gfile.Exists(image_path):
tf.logging.fatal('File does not exist %s', image_path)
image_data = gfile.FastGFile(image_path, 'rb').read()
bottleneck_values = run_bottleneck_on_image(sess, image_data, jpeg_data_tensor, bottleneck_tensor)
bottleneck_string = ','.join(str(x) for x in bottleneck_values)
with open(bottleneck_path, 'w') as bottleneck_file:
bottleneck_file.write(bottleneck_string)
def get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir,
category, bottleneck_dir, jpeg_data_tensor,
bottleneck_tensor):
label_lists = image_lists[label_name]
sub_dir = label_lists['dir']
sub_dir_path = os.path.join(bottleneck_dir, sub_dir)
ensure_dir_exists(sub_dir_path)
bottleneck_path = get_bottleneck_path(image_lists, label_name, index, bottleneck_dir, category)
if not os.path.exists(bottleneck_path):
create_bottleneck_file(bottleneck_path, image_lists, label_name, index, image_dir, category, sess, jpeg_data_tensor, bottleneck_tensor)
with open(bottleneck_path, 'r') as bottleneck_file:
bottleneck_string = bottleneck_file.read()
did_hit_error = False
try:
bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
except:
print("Invalid float found, recreating bottleneck")
did_hit_error = True
if did_hit_error:
create_bottleneck_file(bottleneck_path, image_lists, label_name, index, image_dir, category, sess, jpeg_data_tensor, bottleneck_tensor)
with open(bottleneck_path, 'r') as bottleneck_file:
bottleneck_string = bottleneck_file.read()
# Allow exceptions to propagate here, since they shouldn't happen after a fresh creation
bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
return bottleneck_values
def cache_bottlenecks(sess, image_lists, image_dir, bottleneck_dir,
jpeg_data_tensor, bottleneck_tensor):
how_many_bottlenecks = 0
ensure_dir_exists(bottleneck_dir)
for label_name, label_lists in image_lists.items():
for category in ['training', 'testing', 'validation']:
category_list = label_lists[category]
for index, unused_base_name in enumerate(category_list):
get_or_create_bottleneck(sess, image_lists, label_name, index,
image_dir, category, bottleneck_dir,
jpeg_data_tensor, bottleneck_tensor)
how_many_bottlenecks += 1
if how_many_bottlenecks % 100 == 0:
print(str(how_many_bottlenecks) + ' bottleneck files created.')
def get_random_cached_bottlenecks(sess, image_lists, how_many, category,
bottleneck_dir, image_dir, jpeg_data_tensor,
bottleneck_tensor):
class_count = len(image_lists.keys())
bottlenecks = []
ground_truths = []
filenames = []
if how_many >= 0:
# Retrieve a random sample of bottlenecks.
for unused_i in range(how_many):
label_index = random.randrange(class_count)
label_name = list(image_lists.keys())[label_index]
image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)
image_name = get_image_path(image_lists, label_name, image_index,
image_dir, category)
bottleneck = get_or_create_bottleneck(sess, image_lists, label_name,
image_index, image_dir, category,
bottleneck_dir, jpeg_data_tensor,
bottleneck_tensor)
ground_truth = np.zeros(class_count, dtype=np.float32)
ground_truth[label_index] = 1.0
bottlenecks.append(bottleneck)
ground_truths.append(ground_truth)
filenames.append(image_name)
else:
# Retrieve all bottlenecks.
for label_index, label_name in enumerate(image_lists.keys()):
for image_index, image_name in enumerate(
image_lists[label_name][category]):
image_name = get_image_path(image_lists, label_name, image_index,
image_dir, category)
bottleneck = get_or_create_bottleneck(sess, image_lists, label_name,
image_index, image_dir, category,
bottleneck_dir, jpeg_data_tensor,
bottleneck_tensor)
ground_truth = np.zeros(class_count, dtype=np.float32)
ground_truth[label_index] = 1.0
bottlenecks.append(bottleneck)
ground_truths.append(ground_truth)
filenames.append(image_name)
return bottlenecks, ground_truths, filenames
def get_label_cached_bottlenecks(sess, image_lists, how_many, category,
bottleneck_dir, image_dir, jpeg_data_tensor,
bottleneck_tensor,label_name,label_index):
class_count = len(image_lists.keys())
bottlenecks = []
ground_truths = []
filenames = []
# Retrieve all bottlenecks.
#for label_index, label_name in enumerate(image_lists.keys()):
for image_index, image_name in enumerate(
image_lists[label_name][category]):
image_name = get_image_path(image_lists, label_name, image_index,
image_dir, category)
bottleneck = get_or_create_bottleneck(sess, image_lists, label_name,
image_index, image_dir, category,
bottleneck_dir, jpeg_data_tensor,
bottleneck_tensor)
ground_truth = np.zeros(class_count, dtype=np.float32)
ground_truth[label_index] = 1.0
bottlenecks.append(bottleneck)
ground_truths.append(ground_truth)
filenames.append(image_name)
return bottlenecks, ground_truths, filenames
def get_random_distorted_bottlenecks(
sess, image_lists, how_many, category, image_dir, input_jpeg_tensor,
distorted_image, resized_input_tensor, bottleneck_tensor):
class_count = len(image_lists.keys())
bottlenecks = []
ground_truths = []
for unused_i in range(how_many):
label_index = random.randrange(class_count)
label_name = list(image_lists.keys())[label_index]
image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)
image_path = get_image_path(image_lists, label_name, image_index, image_dir,
category)
if not gfile.Exists(image_path):
tf.logging.fatal('File does not exist %s', image_path)
jpeg_data = gfile.FastGFile(image_path, 'rb').read()
# Note that we materialize the distorted_image_data as a numpy array before
# sending running inference on the image. This involves 2 memory copies and
# might be optimized in other implementations.
distorted_image_data = sess.run(distorted_image,
{input_jpeg_tensor: jpeg_data})
bottleneck = run_bottleneck_on_image(sess, distorted_image_data,
resized_input_tensor,
bottleneck_tensor)
ground_truth = np.zeros(class_count, dtype=np.float32)
ground_truth[label_index] = 1.0
bottlenecks.append(bottleneck)
ground_truths.append(ground_truth)
return bottlenecks, ground_truths
def should_distort_images(flip_left_right, random_crop, random_scale,
random_brightness):
return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
(random_brightness != 0))
def add_input_distortions(flip_left_right, random_crop, random_scale,
random_brightness):
jpeg_data = tf.placeholder(tf.string, name='DistortJPGInput')
decoded_image = tf.image.decode_jpeg(jpeg_data, channels=MODEL_INPUT_DEPTH)
decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)
decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
margin_scale = 1.0 + (random_crop / 100.0)
resize_scale = 1.0 + (random_scale / 100.0)
margin_scale_value = tf.constant(margin_scale)
resize_scale_value = tf.random_uniform(tensor_shape.scalar(),
minval=1.0,
maxval=resize_scale)
scale_value = tf.multiply(margin_scale_value, resize_scale_value)
precrop_width = tf.multiply(scale_value, MODEL_INPUT_WIDTH)
precrop_height = tf.multiply(scale_value, MODEL_INPUT_HEIGHT)
precrop_shape = tf.stack([precrop_height, precrop_width])
precrop_shape_as_int = tf.cast(precrop_shape, dtype=tf.int32)
precropped_image = tf.image.resize_bilinear(decoded_image_4d,
precrop_shape_as_int)
precropped_image_3d = tf.squeeze(precropped_image, squeeze_dims=[0])
cropped_image = tf.random_crop(precropped_image_3d,
[MODEL_INPUT_HEIGHT, MODEL_INPUT_WIDTH,
MODEL_INPUT_DEPTH])
if flip_left_right:
flipped_image = tf.image.random_flip_left_right(cropped_image)
else:
flipped_image = cropped_image
brightness_min = 1.0 - (random_brightness / 100.0)
brightness_max = 1.0 + (random_brightness / 100.0)
brightness_value = tf.random_uniform(tensor_shape.scalar(),
minval=brightness_min,
maxval=brightness_max)
brightened_image = tf.multiply(flipped_image, brightness_value)
distort_result = tf.expand_dims(brightened_image, 0, name='DistortResult')
return jpeg_data, distort_result
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
def add_final_training_ops(class_count, final_tensor_name, bottleneck_tensor):
with tf.name_scope('input'):
bottleneck_input = tf.placeholder_with_default(
bottleneck_tensor, shape=[None, BOTTLENECK_TENSOR_SIZE],
name='BottleneckInputPlaceholder')
ground_truth_input = tf.placeholder(tf.float32,
[None, class_count],
name='GroundTruthInput')
# Organizing the following ops as `final_training_ops` so they're easier
# to see in TensorBoard
layer_name = 'final_training_ops'
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
layer_weights = tf.Variable(tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, class_count], stddev=0.001), name='final_weights')
variable_summaries(layer_weights)
with tf.name_scope('biases'):
layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases')
variable_summaries(layer_biases)
with tf.name_scope('Wx_plus_b'):
logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases
tf.summary.histogram('pre_activations', logits)
final_tensor = tf.nn.softmax(logits, name=final_tensor_name)
tf.summary.histogram('activations', final_tensor)
with tf.name_scope('cross_entropy'):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
labels=ground_truth_input, logits=logits)
with tf.name_scope('total'):
cross_entropy_mean = tf.reduce_mean(cross_entropy)
tf.summary.scalar('cross_entropy', cross_entropy_mean)
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(
cross_entropy_mean)
return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,
final_tensor)
def add_evaluation_step(result_tensor, ground_truth_tensor):
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
prediction = tf.argmax(result_tensor, 1)
correct_prediction = tf.equal(
prediction, tf.argmax(ground_truth_tensor, 1))
with tf.name_scope('accuracy'):
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', evaluation_step)
return evaluation_step, prediction
def main(_):
# Setup the directory we'll write summaries to for TensorBoard
if tf.gfile.Exists(FLAGS.summaries_dir):
tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
tf.gfile.MakeDirs(FLAGS.summaries_dir)
# Set up the pre-trained graph.
maybe_download_and_extract()
graph, bottleneck_tensor, jpeg_data_tensor, resized_image_tensor = (
create_inception_graph())
# Look at the folder structure, and create lists of all the images.
image_lists = create_image_lists(FLAGS.image_dir, FLAGS.testing_percentage,
FLAGS.validation_percentage)
class_count = len(image_lists.keys())
if class_count == 0:
print('No valid folders of images found at ' + FLAGS.image_dir)
return -1
if class_count == 1:
print('Only one valid folder of images found at ' + FLAGS.image_dir +
' - multiple classes are needed for classification.')
return -1
# See if the command-line flags mean we're applying any distortions.
do_distort_images = should_distort_images(
FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale,
FLAGS.random_brightness)
sess = tf.Session()
if do_distort_images:
# We will be applying distortions, so setup the operations we'll need.
distorted_jpeg_data_tensor, distorted_image_tensor = add_input_distortions(
FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale,
FLAGS.random_brightness)
else:
# We'll make sure we've calculated the 'bottleneck' image summaries and
# cached them on disk.
cache_bottlenecks(sess, image_lists, FLAGS.image_dir, FLAGS.bottleneck_dir,
jpeg_data_tensor, bottleneck_tensor)
# Add the new layer that we'll be training.
(train_step, cross_entropy, bottleneck_input, ground_truth_input,
final_tensor) = add_final_training_ops(len(image_lists.keys()),
FLAGS.final_tensor_name,
bottleneck_tensor)
# Create the operations we need to evaluate the accuracy of our new layer.
evaluation_step, prediction = add_evaluation_step(
final_tensor, ground_truth_input)
# Merge all the summaries and write them out to /tmp/retrain_logs (by default)
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
sess.graph)
validation_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/validation')
# Set up all our weights to their initial default values.
init = tf.global_variables_initializer()
sess.run(init)
# Run the training for as many cycles as requested on the command line.
for i in range(FLAGS.how_many_training_steps):
# Get a batch of input bottleneck values, either calculated fresh every time
# with distortions applied, or from the cache stored on disk.
if do_distort_images:
train_bottlenecks, train_ground_truth = get_random_distorted_bottlenecks(
sess, image_lists, FLAGS.train_batch_size, 'training',
FLAGS.image_dir, distorted_jpeg_data_tensor,
distorted_image_tensor, resized_image_tensor, bottleneck_tensor)
else:
train_bottlenecks, train_ground_truth, _ = get_random_cached_bottlenecks(
sess, image_lists, FLAGS.train_batch_size, 'training',
FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,
bottleneck_tensor)
# Feed the bottlenecks and ground truth into the graph, and run a training
# step. Capture training summaries for TensorBoard with the `merged` op.
train_summary, _ = sess.run([merged, train_step],
feed_dict={bottleneck_input: train_bottlenecks,
ground_truth_input: train_ground_truth})
train_writer.add_summary(train_summary, i)
# Every so often, print out how well the graph is training.
is_last_step = (i + 1 == FLAGS.how_many_training_steps)
if (i % FLAGS.eval_step_interval) == 0 or is_last_step:
train_accuracy, cross_entropy_value = sess.run(
[evaluation_step, cross_entropy],
feed_dict={bottleneck_input: train_bottlenecks,
ground_truth_input: train_ground_truth})
print('%s: Step %d: Train accuracy = %.1f%%' % (datetime.now(), i,
train_accuracy * 100))
print('%s: Step %d: Cross entropy = %f' % (datetime.now(), i,
cross_entropy_value))
validation_bottlenecks, validation_ground_truth, _ = (
get_random_cached_bottlenecks(
sess, image_lists, FLAGS.validation_batch_size, 'validation',
FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,
bottleneck_tensor))
# Run a validation step and capture training summaries for TensorBoard
# with the `merged` op.
validation_summary, validation_accuracy = sess.run(
[merged, evaluation_step],
feed_dict={bottleneck_input: validation_bottlenecks,
ground_truth_input: validation_ground_truth})
validation_writer.add_summary(validation_summary, i)
print('%s: Step %d: Validation accuracy = %.1f%% (N=%d)' %
(datetime.now(), i, validation_accuracy * 100,
len(validation_bottlenecks)))
# We've completed all our training, so run a final test evaluation on
# some new images we haven't used before.
test_bottlenecks, test_ground_truth, test_filenames = (
get_random_cached_bottlenecks(sess, image_lists, FLAGS.test_batch_size,
'testing', FLAGS.bottleneck_dir,
FLAGS.image_dir, jpeg_data_tensor,
bottleneck_tensor))
test_accuracy, predictions = sess.run(
[evaluation_step, prediction],
feed_dict={bottleneck_input: test_bottlenecks,
ground_truth_input: test_ground_truth})
print('Final test accuracy = %.1f%% (N=%d)' % (
test_accuracy * 100, len(test_bottlenecks)))
for label_index, label_name in enumerate(image_lists.keys()):
test_label_bottlenecks, test_label_ground_truth, test_label_filenames =(get_label_cached_bottlenecks(sess, image_lists, FLAGS.test_batch_size,'testing', FLAGS.bottleneck_dir,FLAGS.image_dir, jpeg_data_tensor,bottleneck_tensor,label_name,label_index))
test_accuracy, predictions = sess.run(
[evaluation_step, prediction],
feed_dict={bottleneck_input: test_label_bottlenecks,
ground_truth_input: test_label_ground_truth})
print('%s test accuracy = %.1f%% (N=%d)' % (
label_name,test_accuracy * 100, len(test_label_bottlenecks)))
if FLAGS.print_misclassified_test_images:
print('=== MISCLASSIFIED TEST IMAGES ===')
for i, test_filename in enumerate(test_filenames):
if predictions[i] != test_ground_truth[i].argmax():
print('%70s %s' % (test_filename,
list(image_lists.keys())[predictions[i]]))
# Write out the trained graph and labels with the weights stored as constants.
output_graph_def = graph_util.convert_variables_to_constants(
sess, graph.as_graph_def(), [FLAGS.final_tensor_name])
with gfile.FastGFile(FLAGS.output_graph, 'wb') as f:
f.write(output_graph_def.SerializeToString())
with gfile.FastGFile(FLAGS.output_labels, 'w') as f:
f.write('\n'.join(image_lists.keys()) + '\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--image_dir',
type = str,
default = './image200d',
help='Path to folders of labeled images.'
)
parser.add_argument(
'--output_graph',
type = str,
default = './output_graph_new.pb',
help = 'Where to save the trained graph.'
)
parser.add_argument(
'--output_labels',
type = str,
default='./output_labels_new.txt',
help = 'Where to save the trained graph\'s labels.'
)
parser.add_argument(
'--summaries_dir',
type = str,
default = './retrain_logs',
help = 'Where to save summary logs for TensorBoard.'
)
parser.add_argument(
'--how_many_training_steps',
type = int,
default = 1000, # 4000
help='How many training steps to run before ending.'
)
parser.add_argument(
'--learning_rate',
type=float,
default = 0.01,
help='How large a learning rate to use when training.'
)
parser.add_argument(
'--testing_percentage',
type = int,
default = 10,
help = 'What percentage of images to use as a test set.'
)
parser.add_argument(
'--validation_percentage',
type = int,
default = 10,
help = 'What percentage of images to use as a validation set.'
)
parser.add_argument(
'--eval_step_interval',
type = int,
default = 10,
help = 'How often to evaluate the training results.'
)
parser.add_argument(
'--train_batch_size',
type = int,
default = 5,
help = 'How many images to train on at a time.'
)
parser.add_argument(
'--test_batch_size',
type = int,
default = -1,
help = """\
How many images to test on. This test set is only used once, to evaluate
the final accuracy of the model after training completes.
A value of -1 causes the entire test set to be used, which leads to more
stable results across runs.\
"""
)
parser.add_argument(
'--validation_batch_size',
type = int,
default = 5,
help = """\
How many images to use in an evaluation batch. This validation set is
used much more often than the test set, and is an early indicator of how
accurate the model is during training.
A value of -1 causes the entire validation set to be used, which leads to
more stable results across training iterations, but may be slower on large
training sets.\
"""
)
parser.add_argument(
'--print_misclassified_test_images',
default = False,
help = """\
Whether to print out a list of all misclassified test images.\
""",
action='store_true'
)
parser.add_argument(
'--model_dir',
type = str,
default = './data/imagenet',
help = """\
Path to classify_image_graph_def.pb,
imagenet_synset_to_human_label_map.txt, and
imagenet_2012_challenge_label_map_proto.pbtxt.\
"""
)
parser.add_argument(
'--bottleneck_dir',
type=str,
default = './data/bottleneck',
help = 'Path to cache bottleneck layer values as files.'
)
parser.add_argument(
'--final_tensor_name',
type = str,
default = 'final_result',
help = """\
The name of the output classification layer in the retrained graph.\
"""
)
parser.add_argument(
'--flip_left_right',
default = False,
help = """\
Whether to randomly flip half of the training images horizontally.\
""",
action = 'store_true'
)
parser.add_argument(
'--random_crop',
type = int,
default = 0,
help = """\
A percentage determining how much of a margin to randomly crop off the
training images.\
"""
)
parser.add_argument(
'--random_scale',
type = int,
default = 0,
help = """\
A percentage determining how much to randomly scale up the size of the
training images by.\
"""
)
parser.add_argument(
'--random_brightness',
type=int,
default=0,
help="""\
A percentage determining how much to randomly multiply the training image
input pixels up or down by.\
"""
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)