forked from naturomics/CapsNet-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
45 lines (35 loc) · 1.93 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import tensorflow as tf
flags = tf.app.flags
############################
# hyper parameters #
############################
# For separate margin loss
flags.DEFINE_float('m_plus', 0.9, 'the parameter of m plus')
flags.DEFINE_float('m_minus', 0.1, 'the parameter of m minus')
flags.DEFINE_float('lambda_val', 0.5, 'down weight of the loss for absent digit classes')
# for training
flags.DEFINE_integer('batch_size', 128, 'batch size')
flags.DEFINE_integer('epoch', 50, 'epoch')
flags.DEFINE_integer('iter_routing', 3, 'number of iterations in routing algorithm')
flags.DEFINE_boolean('mask_with_y', True, 'use the true label to mask out target capsule or not')
flags.DEFINE_float('stddev', 0.01, 'stddev for W initializer')
flags.DEFINE_float('regularization_scale', 0.392, 'regularization coefficient for reconstruction loss, default to 0.0005*784=0.392')
############################
# environment setting #
############################
flags.DEFINE_string('dataset', 'mnist', 'The name of dataset [mnist, fashion-mnist')
flags.DEFINE_boolean('is_training', True, 'train or predict phase')
flags.DEFINE_integer('num_threads', 8, 'number of threads of enqueueing exampls')
flags.DEFINE_string('logdir', 'logdir', 'logs directory')
flags.DEFINE_integer('train_sum_freq', 100, 'the frequency of saving train summary(step)')
flags.DEFINE_integer('val_sum_freq', 500, 'the frequency of saving valuation summary(step)')
flags.DEFINE_integer('save_freq', 3, 'the frequency of saving model(epoch)')
flags.DEFINE_string('results', 'results', 'path for saving results')
############################
# distributed setting #
############################
flags.DEFINE_integer('num_gpu', 2, 'number of gpus for distributed training')
flags.DEFINE_integer('batch_size_per_gpu', 128, 'batch size on 1 gpu')
flags.DEFINE_integer('thread_per_gpu', 4, 'Number of preprocessing threads per tower.')
cfg = tf.app.flags.FLAGS
# tf.logging.set_verbosity(tf.logging.INFO)