forked from alexanderlerch/ACA-Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathComputeChords.m
109 lines (89 loc) · 3.52 KB
/
ComputeChords.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
%computes the chords of the input audio (super simple variant)
%>
%> @param x: time domain sample data, dimension samples X channels
%> @param f_s: sample rate of audio data
%> @param iBlockLength: internal block length (default: 4096 samples)
%> @param iHopLength: internal hop length (default: 2048 samples)
%>
%> @retval cChordLabel likeliest chord string (e.g., C Maj)
%> @retval iChordIdx likeliest chord index (Major: 0:11, minor: 12:23, starting from C, dimensions 2 X number of blocks: first row are the raw results without post-processing, second row are the postprocessed results)
%> @retval t timestamps for each result (length blocks)
%> @retval afChordProbs raw chord probability matrix (dimension 24 X blocks)
% ======================================================================
function [cChordLabel, aiChordIdx, t, P_E] = ComputeChords (x, f_s, iBlockLength, iHopLength)
% set default parameters if necessary
if (nargin < 5)
iHopLength = 2048;
end
if (nargin < 4)
iBlockLength = 8192;
end
% chord names
cChords = char ('C Maj','C# Maj','D Maj','D# Maj','E Maj','F Maj',...
'F# Maj','G Maj','G# Maj','A Maj','A# Maj','B Maj', 'c min',...
'c# min','d min','d# min','e min','f min','f# min','g min',...
'g# min','a min','a# min','b min');
% chord templates
[T] = generateTemplateMatrix_I ();
% transition probabilities
[P_T] = getChordTransProb_I ();
% pre-processing: normalization
x = ToolNormalizeAudio(x);
% extract pitch chroma
[v_pc, t] = ComputeFeature ('SpectralPitchChroma',...
x,...
f_s,...
[],...
iBlockLength,...
iHopLength);
% estimate chord probabilities
P_E = T * v_pc;
P_E = P_E ./ sum(P_E, 1);
% assign series of labels/indices starting with 0
aiChordIdx = zeros(2, length(t));
[~, aiChordIdx(1,:)] = max(P_E, [], 1);
% compute path with Viterbi algorithm
[aiChordIdx(2,:), ~] = ToolViterbi(P_E,...
P_T,...
ones(length(cChords),1)/length(cChords),...
true);
% assign result string
cChordLabel = deblank(cChords(aiChordIdx(2,:),:));
% we want to start with 0!
aiChordIdx = aiChordIdx - 1;
end
function [T] = generateTemplateMatrix_I ()
% init: 12 major and 12 minor triads
T = zeros(24,12);
% all chord pitches are weighted equally
T(1, [1 5 8]) = 1/3;
T(13, [1 4 8]) = 1/3;
% generate templates for all root notes
for i = 1:11
T(i+1, :) = circshift(T(i, :), 1, 2);
T(i+13, :) = circshift(T(i+12, :), 1, 2);
end
end
function [P_T] = getChordTransProb_I()
% circle of fifth tonic distances
circ = [0 -5 2 -3 4 -1 6 1 -4 3 -2 5,...
-3 4 -1 6 1 -4 3 -2 5 0 -5 2];
% set the circle radius and distance
R = 1;
d = .5;
% generate key coordinates (mode in z)
x = R * cos(2 * pi * circ / 12);
y = R * sin(2 * pi * circ / 12);
z = [d * ones(1,12),...
zeros(1,12)];
% compute key distances
for (m = 1:size(x, 2))
for (n = 1:size(x, 2))
P_T(m, n) = sqrt((x(m)-x(n))^2 + (y(m)-y(n))^2 + (z(m)-z(n))^2);
end
end
% convert distances into 'probabilities'
P_T = .1 + P_T;
P_T = 1 - P_T / (.1 + max(max(P_T)));
P_T = P_T ./ sum(P_T, 1);
end