-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauto_single.py
152 lines (127 loc) · 4.9 KB
/
auto_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#TODO
# shuffle data when training
# make test data
import sys
from keras.layers import Input, Dense
from keras.models import Model
from keras import regularizers
import random
# 2921*943= 2754503
# this is the size of our encoded representations
encoding_dim = 32 # 32 floats -> compression of factor 24.5, assuming the input is 784 floats
# this is our input placeholder
input_profile = Input(shape=(943,))
# "encoded" is the encoded representation of the input
encoded = Dense(encoding_dim, activation='relu', activity_regularizer=regularizers.l1(10e-5)
)(input_profile)
# "decoded" is the lossy reconstruction of the input
decoded = Dense(943, activation='sigmoid')(encoded)
# this model maps an input to its reconstruction
autoencoder = Model(input_profile, decoded)
# this model maps an input to its encoded representation
# encoder = Model(input_profile, encoded)
# # create a placeholder for an encoded (32-dimensional) input
# encoded_input = Input(shape=(encoding_dim,))
# # retrieve the last layer of the autoencoder model
# decoder_layer = autoencoder.layers[-1]
# # create the decoder model
# decoder = Model(encoded_input, decoder_layer(encoded_input))
autoencoder.compile(optimizer='adadelta', loss='mean_squared_error')
max_ = 14.069335820245042
min_ = -8.195025678439624
import numpy as np
X_GTEx = np.load('GTEx_X_float64.npy')
Y_GTEx = np.load('GTEx_Y_0-4760_float64.npy')
x_test = Y_GTEx
def write_g_prefix(g, data, noise_ratio):
max_ = max(data)
min_ = min(data)
diff = max_ - min_
g.write('\\begin{tikzpicture}\n')
g.write('\\begin{axis}[\n')
g.write('title={Sample size of training data plotted against accuracy at '+str(noise_ratio)+' noise ratio},\n')
g.write('xlabel={Number of Samples},\n')
g.write('ylabel={Mean Square Error between all original and denoised samples},\n')
g.write('xmin=0, xmax=3000,\n')
g.write('ymin='+str(min_)+', ymax='+str(max_)+',\n')
g.write('xtick={0,500,1000,1500,2000,2500,3000},\n')
g.write('ytick={'+str(min_)+','+str(min_+1*diff)+','+str(min_+2*diff)+','+str(min_+3*diff)+','+str(min_+4*diff)+','+str(min_+5*diff)+','+str(min_+6*diff)+','+str(min_+7*diff)+','+str(min_+8*diff)+','+str(min_+9*diff)+','+str(min_+10*diff)+'},\n')
g.write('legend pos=north west,\n')
g.write('ymajorgrids=true,\n')
g.write('grid style=dashed,\n')
g.write(']\n\n')
g.write('\\addplot[\n')
g.write('color=blue,\n')
g.write('mark=square,\n')
g.write(']\n')
g.write('coordinates {\n\n')
def write_t_prefix(t):
t.write('\\npdecimalsign{.}\n')
t.write('\\nprounddigits{2}\n')
t.write('\\begin{tabu} to 0.8\\textwidth { | X[l] | X[r] |}\n')
t.write('\\hline\n')
t.write('samples & MSE\\\\\n')
t.write('\\hline\n')
def write_g_suffix(g):
g.write(' };\n')
g.write('\\end{axis}\n')
g.write('\\end{tikzpicture}')
def write_t_suffix(t):
t.write('\\end{tabu}\n')
t.write('\\npnoround\n')
MSE = []
for r in range(0,11): # noise ratio
noise_factor = r * 0.1
x_train = X_GTEx
x_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape)
MSE.append([])
for s in range(1,11): # samples
samples_ratio = s * 0.1
samples = int((samples_ratio)*len(X_GTEx))
x_train = x_train[:samples]
x_test = x_train
x_noisy = x_noisy[:samples]
print('x_train shape', x_train.shape)
print('x_noisy shape', x_noisy.shape)
autoencoder.fit(x_noisy, x_train, epochs=50, batch_size=256, shuffle=True, validation_data=(x_test, x_test))
# note that we take them from the train set
# encoded_profile = encoder.predict(x_train)
decoded_profile = autoencoder.predict(x_train)
mse = ((x_train - decoded_profile)**2).mean(axis=None)/samples
MSE[r].append(mse)
print('noise =',noise_factor, 'samples =',samples,'normalized mse =',mse)
print(MSE)
g = open('./normal_noise/single_act/graphs.tex', 'a')
g.write('\\documentclass{article}\n\
\\usepackage{tikz}\n\
\\usepackage{pgfplots}\n\
\\usepackage{textcomp}\n\
\\usepackage{array}\n\
\\usepackage{tabu}\n\
\\usepackage{numprint}\n\
\\begin{document}')
t = open('./normal_noise/single_act/'+'tables.tex', 'a')
t.write('\\documentclass{article}\n\
\\usepackage{tikz}\n\
\\usepackage{pgfplots}\n\
\\usepackage{textcomp}\n\
\\usepackage{array}\n\
\\usepackage{tabu}\n\
\\usepackage{numprint}\n\
\\begin{document}')
for r in range(0,11):
noise_factor = r * 0.1
write_g_prefix(g, MSE[r], noise_factor) # passing in M[r] to
write_t_prefix(t) # calculate ticks.
for s in range(1,11):
samples_ratio = s * 0.1
samples = int((samples_ratio)*len(X_GTEx))
g.write('('+str(samples)+', '+str(MSE[r][s-1])+')\n')
t.write(str(samples)+' & '+str(MSE[r][s-1]) +'\\'+'\\' + '\n'+'\hline\n')
write_g_suffix(g)
write_t_suffix(t)
g.write('\n\
\\end{document}\n')
t.write('\\end{document}')
g.close()
t.close()