-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path120-triangle.cpp
37 lines (32 loc) · 1.37 KB
/
120-triangle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
// Title: Triangle
// Description:
// Given a triangle array, return the minimum path sum from top to bottom.
// For each step, you may move to an adjacent number of the row below.
// More formally, if you are on index i on the current row, you may move to either index i or index i + 1 on the next row.
// Follow up: Could you do this using only O(n) extra space, where n is the total number of rows in the triangle?
// Link: https://leetcode.com/problems/triangle/
// Time complexity: O(n^2)
// Space complexity: O(n^2)
class Solution {
public:
int minimumTotal(std::vector<std::vector<int>> &triangle) {
const std::size_t N = triangle.size();
/*
dp[i][j] = the minimum path sum from (i, j) to bottom
= min(dp[i+1][j], dp[i+1][j+1]) + triangle[i][j]
*/
std::vector<std::vector<int>> dp(N+1); {
// len(dp[i]) = i+1
for (std::size_t i = 0; i != N+1; ++i) dp[i] = std::vector<int>(i+1);
// dp[N][j] = 0
for (std::size_t j = 0; j != N+1; ++j) dp[N][j] = 0;
}
for (std::size_t ri = 0; ri != N; ++ri) {
std::size_t i = (N-1) - ri; // i = N-1 ~ 0
for (std::size_t j = 0; j != i+1; ++j) {
dp[i][j] = std::min(dp[i+1][j], dp[i+1][j+1]) + triangle[i][j];
}
}
return dp[0][0];
}
};