-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path525-contiguous-array.cpp
40 lines (34 loc) · 1.57 KB
/
525-contiguous-array.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// Title: Contiguous Array
// Description:
// Given a binary array, find the maximum length of a contiguous subarray with equal number of 0 and 1.
// Link: https://leetcode.com/problems/contiguous-array/
// Time complexity: O(n)
// Space complexity: O(n)
class Solution {
public:
int findMaxLength(std::vector<int> &nums) {
const std::size_t N = nums.size();
std::unordered_map<int, std::size_t> firstEndOfSums; {
// an empty sum of 0 ends at index 0
firstEndOfSums[0] = 0;
}
int partialSum = 0;
std::size_t maxSubarrayLength = 0;
for (std::size_t i = 0; i != N; ++i) {
// we map 0 to -1 and 1 to +1 so that:
// if any sum of subarray equals 0, then the total of 0s is equal to the total of 1s in that range
// and if we reach a same sum seen before, then the partial sum between those two is equal to 0
partialSum += (nums[i] == 0 ? -1 : +1);
// check if we reach a same sum encountered before
if (firstEndOfSums.count(partialSum) != 0) {
// sum of subarray [firstEndOfSums[partialSum], (i+1)) = 0
std::size_t subarrayLength = (i+1) - firstEndOfSums[partialSum];
maxSubarrayLength = std::max(subarrayLength, maxSubarrayLength);
} else {
// record the end of first occurrence of the sum if we haven't seen it before
firstEndOfSums[partialSum] = (i+1);
}
}
return (int) maxSubarrayLength;
}
};