forked from HIPS/autograd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
variational_autoencoder.py
138 lines (112 loc) · 5.36 KB
/
variational_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Implements auto-encoding variational Bayes.
from __future__ import absolute_import, division
from __future__ import print_function
import autograd.numpy as np
import autograd.numpy.random as npr
import autograd.scipy.stats.norm as norm
from autograd.scipy.special import expit as sigmoid
from autograd import grad
from autograd.misc.optimizers import adam
from data import load_mnist, save_images
def diag_gaussian_log_density(x, mu, log_std):
return np.sum(norm.logpdf(x, mu, np.exp(log_std)), axis=-1)
def unpack_gaussian_params(params):
# Params of a diagonal Gaussian.
D = np.shape(params)[-1] // 2
mean, log_std = params[:, :D], params[:, D:]
return mean, log_std
def sample_diag_gaussian(mean, log_std, rs):
return rs.randn(*mean.shape) * np.exp(log_std) + mean
def bernoulli_log_density(targets, unnormalized_logprobs):
# unnormalized_logprobs are in R
# Targets must be -1 or 1
label_probabilities = -np.logaddexp(0, -unnormalized_logprobs*targets)
return np.sum(label_probabilities, axis=-1) # Sum across pixels.
def relu(x): return np.maximum(0, x)
def init_net_params(scale, layer_sizes, rs=npr.RandomState(0)):
"""Build a (weights, biases) tuples for all layers."""
return [(scale * rs.randn(m, n), # weight matrix
scale * rs.randn(n)) # bias vector
for m, n in zip(layer_sizes[:-1], layer_sizes[1:])]
def batch_normalize(activations):
mbmean = np.mean(activations, axis=0, keepdims=True)
return (activations - mbmean) / (np.std(activations, axis=0, keepdims=True) + 1)
def neural_net_predict(params, inputs):
"""Params is a list of (weights, bias) tuples.
inputs is an (N x D) matrix.
Applies batch normalization to every layer but the last."""
for W, b in params[:-1]:
outputs = batch_normalize(np.dot(inputs, W) + b) # linear transformation
inputs = relu(outputs) # nonlinear transformation
outW, outb = params[-1]
outputs = np.dot(inputs, outW) + outb
return outputs
def nn_predict_gaussian(params, inputs):
# Returns means and diagonal variances
return unpack_gaussian_params(neural_net_predict(params, inputs))
def generate_from_prior(gen_params, num_samples, noise_dim, rs):
latents = rs.randn(num_samples, noise_dim)
return sigmoid(neural_net_predict(gen_params, latents))
def p_images_given_latents(gen_params, images, latents):
preds = neural_net_predict(gen_params, latents)
return bernoulli_log_density(images, preds)
def vae_lower_bound(gen_params, rec_params, data, rs):
# We use a simple Monte Carlo estimate of the KL
# divergence from the prior.
q_means, q_log_stds = nn_predict_gaussian(rec_params, data)
latents = sample_diag_gaussian(q_means, q_log_stds, rs)
q_latents = diag_gaussian_log_density(latents, q_means, q_log_stds)
p_latents = diag_gaussian_log_density(latents, 0, 0)
likelihood = p_images_given_latents(gen_params, data, latents)
return np.mean(p_latents + likelihood - q_latents)
if __name__ == '__main__':
# Model hyper-parameters
latent_dim = 10
data_dim = 784 # How many pixels in each image (28x28).
gen_layer_sizes = [latent_dim, 300, 200, data_dim]
rec_layer_sizes = [data_dim, 200, 300, latent_dim * 2]
# Training parameters
param_scale = 0.01
batch_size = 200
num_epochs = 15
step_size = 0.001
print("Loading training data...")
N, train_images, _, test_images, _ = load_mnist()
def binarise(images):
on = images > 0.5
images = images * 0 - 1
images[on] = 1.0
return images
print("Binarising training data...")
train_images = binarise(train_images)
test_images = binarise(test_images)
init_gen_params = init_net_params(param_scale, gen_layer_sizes)
init_rec_params = init_net_params(param_scale, rec_layer_sizes)
combined_init_params = (init_gen_params, init_rec_params)
num_batches = int(np.ceil(len(train_images) / batch_size))
def batch_indices(iter):
idx = iter % num_batches
return slice(idx * batch_size, (idx+1) * batch_size)
# Define training objective
seed = npr.RandomState(0)
def objective(combined_params, iter):
data_idx = batch_indices(iter)
gen_params, rec_params = combined_params
return -vae_lower_bound(gen_params, rec_params, train_images[data_idx], seed) / data_dim
# Get gradients of objective using autograd.
objective_grad = grad(objective)
print(" Epoch | Objective | Test ELBO ")
def print_perf(combined_params, iter, grad):
if iter % 10 == 0:
gen_params, rec_params = combined_params
bound = np.mean(objective(combined_params, iter))
message = "{:15}|{:20}|".format(iter//num_batches, bound)
if iter % 100 == 0:
test_bound = -vae_lower_bound(gen_params, rec_params, test_images, seed) / data_dim
message += "{:20}".format(test_bound)
print(message)
fake_data = generate_from_prior(gen_params, 20, latent_dim, seed)
save_images(fake_data, 'vae_samples.png', vmin=0, vmax=1)
# The optimizers provided can optimize lists, tuples, or dicts of parameters.
optimized_params = adam(objective_grad, combined_init_params, step_size=step_size,
num_iters=num_epochs * num_batches, callback=print_perf)