-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathngtdm.py
274 lines (197 loc) · 10.7 KB
/
ngtdm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import numpy
from radiomics import base, cMatrices
class RadiomicsNGTDM(base.RadiomicsFeaturesBase):
r"""
A Neighbouring Gray Tone Difference Matrix quantifies the difference between a gray value and the average gray value
of its neighbours within distance :math:`\delta`. The sum of absolute differences for gray level :math:`i` is stored in the matrix.
Let :math:`\textbf{X}_{gl}` be a set of segmented voxels and :math:`x_{gl}(j_x,j_y,j_z) \in \textbf{X}_{gl}` be the gray level of a voxel at postion
:math:`(j_x,j_y,j_z)`, then the average gray level of the neigbourhood is:
.. math::
\bar{A}_i &= \bar{A}(j_x, j_y, j_z) \\
&= \displaystyle\frac{1}{W} \displaystyle\sum_{k_x=-\delta}^{\delta}\displaystyle\sum_{k_y=-\delta}^{\delta}
\displaystyle\sum_{k_z=-\delta}^{\delta}{x_{gl}(j_x+k_x, j_y+k_y, j_z+k_z)}, \\
&\mbox{where }(k_x,k_y,k_z)\neq(0,0,0)\mbox{ and } x_{gl}(j_x+k_x, j_y+k_y, j_z+k_z) \in \textbf{X}_{gl}
Here, :math:`W` is the number of voxels in the neighbourhood that are also in :math:`\textbf{X}_{gl}`.
As a two dimensional example, let the following matrix :math:`\textbf{I}` represent a 4x4 image,
having 5 discrete grey levels, but no voxels with gray level 4:
.. math::
\textbf{I} = \begin{bmatrix}
1 & 2 & 5 & 2\\
3 & 5 & 1 & 3\\
1 & 3 & 5 & 5\\
3 & 1 & 1 & 1\end{bmatrix}
The following NGTDM can be obtained:
.. math::
\begin{array}{cccc}
i & n_i & p_i & s_i\\
\hline
1 & 6 & 0.375 & 13.35\\
2 & 2 & 0.125 & 2.00\\
3 & 4 & 0.25 & 2.63\\
4 & 0 & 0.00 & 0.00\\
5 & 4 & 0.25 & 10.075\end{array}
6 pixels have gray level 1, therefore:
:math:`s_1 = |1-10/3| + |1-30/8| + |1-15/5| + |1-13/5| + |1-15/5| + |1-11/3| = 13.35`
For gray level 2, there are 2 pixels, therefore:
:math:`s_2 = |2-15/5| + |2-15/5| = 2`
Similar for gray values 3 and 5:
:math:`s_3 = |3-12/5| + |3-18/5| + |3-20/8| + |3-5/3| = 3.03 \\
s_5 = |5-14/5| + |5-18/5| + |5-20/8| + |5-11/5| = 10.075`
Let:
:math:`n_i` be the number of voxels in :math:`X_{gl}` with gray level :math:`i`
:math:`N_{v,p}` be the total number of voxels in :math:`X_{gl}` and equal to :math:`\sum{n_i}` (i.e. the number of voxels
with a valid region; at least 1 neighbor). :math:`N_{v,p} \leq N_p`, where :math:`N_p` is the total number of voxels in the ROI.
:math:`p_i` be the gray level probability and equal to :math:`n_i/N_v`
:math:`s_i = \left\{ {\begin{array} {rcl}
\sum^{n_i}{|i-\bar{A}_i|} & \mbox{for} & n_i \neq 0 \\
0 & \mbox{for} & n_i = 0 \end{array}}\right.`
be the sum of absolute differences for gray level :math:`i`
:math:`N_g` be the number of discreet gray levels
:math:`N_{g,p}` be the number of gray levels where :math:`p_i \neq 0`
The following class specific settings are possible:
- distances [[1]]: List of integers. This specifies the distances between the center voxel and the neighbor, for which
angles should be generated.
References
- Amadasun M, King R; Textural features corresponding to textural properties;
Systems, Man and Cybernetics, IEEE Transactions on 19:1264-1274 (1989). doi: 10.1109/21.44046
"""
def __init__(self, inputImage, inputMask, **kwargs):
super(RadiomicsNGTDM, self).__init__(inputImage, inputMask, **kwargs)
self.P_ngtdm = None
self.imageArray = self._applyBinning(self.imageArray)
def _initCalculation(self, voxelCoordinates=None):
self.P_ngtdm = self._calculateMatrix(voxelCoordinates)
self._calculateCoefficients()
def _calculateMatrix(self, voxelCoordinates=None):
matrix_args = [
self.imageArray,
self.maskArray,
numpy.array(self.settings.get('distances', [1])),
self.coefficients['Ng'],
self.settings.get('force2D', False),
self.settings.get('force2Ddimension', 0)
]
if self.voxelBased:
matrix_args += [self.settings.get('kernelRadius', 1), voxelCoordinates]
P_ngtdm = cMatrices.calculate_ngtdm(*matrix_args) # shape (Nvox, Ng, 3)
# Delete empty grey levels
emptyGrayLevels = numpy.where(numpy.sum(P_ngtdm[:, :, 0], 0) == 0)
P_ngtdm = numpy.delete(P_ngtdm, emptyGrayLevels, 1)
return P_ngtdm
def _calculateCoefficients(self):
# No of voxels that have a valid region, lesser equal to Np
Nvp = numpy.sum(self.P_ngtdm[:, :, 0], 1) # shape (Nvox,)
self.coefficients['Nvp'] = Nvp # shape (Nv,)
# Normalize P_ngtdm[:, 0] (= n_i) to obtain p_i
self.coefficients['p_i'] = self.P_ngtdm[:, :, 0] / Nvp[:, None]
self.coefficients['s_i'] = self.P_ngtdm[:, :, 1]
self.coefficients['ivector'] = self.P_ngtdm[:, :, 2]
# Ngp = number of graylevels, for which p_i > 0
self.coefficients['Ngp'] = numpy.sum(self.P_ngtdm[:, :, 0] > 0, 1)
p_zero = numpy.where(self.coefficients['p_i'] == 0)
self.coefficients['p_zero'] = p_zero
def getCoarsenessFeatureValue(self):
r"""
Calculate and return the coarseness.
:math:`Coarseness = \frac{1}{\sum^{N_g}_{i=1}{p_{i}s_{i}}}`
Coarseness is a measure of average difference between the center voxel and its neighbourhood and is an indication
of the spatial rate of change. A higher value indicates a lower spatial change rate and a locally more uniform texture.
N.B. :math:`\sum^{N_g}_{i=1}{p_{i}s_{i}}` potentially evaluates to 0 (in case of a completely homogeneous image).
If this is the case, an arbitrary value of :math:`10^6` is returned.
"""
p_i = self.coefficients['p_i']
s_i = self.coefficients['s_i']
sum_coarse = numpy.sum(p_i * s_i, 1)
sum_coarse[sum_coarse != 0] = 1 / sum_coarse[sum_coarse != 0]
sum_coarse[sum_coarse == 0] = 1e6
return sum_coarse
def getContrastFeatureValue(self):
r"""
Calculate and return the contrast.
:math:`Contrast = \left(\frac{1}{N_{g,p}(N_{g,p}-1)}\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{p_{i}p_{j}(i-j)^2}\right)
\left(\frac{1}{N_{v,p}}\displaystyle\sum^{N_g}_{i=1}{s_i}\right)\text{, where }p_i \neq 0, p_j \neq 0`
Contrast is a measure of the spatial intensity change, but is also dependent on the overall gray level dynamic range.
Contrast is high when both the dynamic range and the spatial change rate are high, i.e. an image with a large range
of gray levels, with large changes between voxels and their neighbourhood.
N.B. In case of a completely homogeneous image, :math:`N_{g,p} = 1`, which would result in a division by 0. In this
case, an arbitray value of 0 is returned.
"""
Ngp = self.coefficients['Ngp'] # shape (Nvox,)
Nvp = self.coefficients['Nvp'] # shape (Nvox,)
p_i = self.coefficients['p_i'] # shape (Nvox, Ng)
s_i = self.coefficients['s_i'] # shape (Nvox, Ng)
i = self.coefficients['ivector'] # shape (Ng,)
div = Ngp * (Ngp - 1)
# Terms where p_i = 0 or p_j = 0 will calculate as 0, and therefore do not affect the sum
contrast = (numpy.sum(p_i[:, :, None] * p_i[:, None, :] * (i[:, :, None] - i[:, None, :]) ** 2, (1, 2)) *
numpy.sum(s_i, 1) / Nvp)
contrast[div != 0] /= div[div != 0]
contrast[div == 0] = 0
return contrast
def getBusynessFeatureValue(self):
r"""
Calculate and return the busyness.
:math:`Busyness = \frac{\sum^{N_g}_{i = 1}{p_{i}s_{i}}}{\sum^{N_g}_{i = 1}\sum^{N_g}_{j = 1}{|ip_i - jp_j|}}\text{, where }p_i \neq 0, p_j \neq 0`
A measure of the change from a pixel to its neighbour. A high value for busyness indicates a 'busy' image, with rapid
changes of intensity between pixels and its neighbourhood.
N.B. if :math:`N_{g,p} = 1`, then :math:`busyness = \frac{0}{0}`. If this is the case, 0 is returned, as it concerns
a fully homogeneous region.
"""
p_i = self.coefficients['p_i'] # shape (Nv, Ngp)
s_i = self.coefficients['s_i'] # shape (Nv, Ngp)
i = self.coefficients['ivector'] # shape (Nv, Ngp)
p_zero = self.coefficients['p_zero'] # shape (2, z)
i_pi = i * p_i
absdiff = numpy.abs(i_pi[:, :, None] - i_pi[:, None, :])
# Remove terms from the sum where p_i = 0 or p_j = 0
absdiff[p_zero[0], :, p_zero[1]] = 0
absdiff[p_zero[0], p_zero[1], :] = 0
absdiff = numpy.sum(absdiff, (1, 2))
busyness = numpy.sum(p_i * s_i, 1)
busyness[absdiff != 0] = busyness[absdiff != 0] / absdiff[absdiff != 0]
busyness[absdiff == 0] = 0
return busyness
def getComplexityFeatureValue(self):
r"""
Calculate and return the complexity.
:math:`Complexity = \frac{1}{N_{v,p}}\displaystyle\sum^{N_g}_{i = 1}\displaystyle\sum^{N_g}_{j = 1}{|i - j|
\frac{p_{i}s_{i} + p_{j}s_{j}}{p_i + p_j}}\text{, where }p_i \neq 0, p_j \neq 0`
An image is considered complex when there are many primitive components in the image, i.e. the image is non-uniform
and there are many rapid changes in gray level intensity.
"""
Nvp = self.coefficients['Nvp'] # shape (Nv,)
p_i = self.coefficients['p_i'] # shape (Nv, Ngp)
s_i = self.coefficients['s_i'] # shape (Nv, Ngp)
i = self.coefficients['ivector'] # shape (Nv, Ngp)
p_zero = self.coefficients['p_zero'] # shape (2, z)
pi_si = p_i * s_i
numerator = pi_si[:, :, None] + pi_si[:, None, :]
# Remove terms from the sum where p_i = 0 or p_j = 0
numerator[p_zero[0], :, p_zero[1]] = 0
numerator[p_zero[0], p_zero[1], :] = 0
divisor = p_i[:, :, None] + p_i[:, None, :]
divisor[divisor == 0] = 1 # Prevent division by 0 errors. (Numerator is 0 at those indices too)
complexity = numpy.sum(numpy.abs(i[:, :, None] - i[:, None, :]) * numerator / divisor, (1, 2)) / Nvp
return complexity
def getStrengthFeatureValue(self):
r"""
Calculate and return the strength.
:math:`Strength = \frac{\sum^{N_g}_{i = 1}\sum^{N_g}_{j = 1}{(p_i + p_j)(i-j)^2}}{\sum^{N_g}_{i = 1}{s_i}}\text{, where }p_i \neq 0, p_j \neq 0`
Strength is a measure of the primitives in an image. Its value is high when the primitives are easily defined and
visible, i.e. an image with slow change in intensity but more large coarse differences in gray level intensities.
N.B. :math:`\sum^{N_g}_{i=1}{s_i}` potentially evaluates to 0 (in case of a completely homogeneous image).
If this is the case, 0 is returned.
"""
p_i = self.coefficients['p_i'] # shape (Nv, Ngp)
s_i = self.coefficients['s_i'] # shape (Nv, Ngp)
i = self.coefficients['ivector'] # shape (Nv, Ngp)
p_zero = self.coefficients['p_zero'] # shape (2, z)
sum_s_i = numpy.sum(s_i, 1)
strength = (p_i[:, :, None] + p_i[:, None, :]) * (i[:, :, None] - i[:, None, :]) ** 2
# Remove terms from the sum where p_i = 0 or p_j = 0
strength[p_zero[0], :, p_zero[1]] = 0
strength[p_zero[0], p_zero[1], :] = 0
strength = numpy.sum(strength, (1, 2))
strength[sum_s_i != 0] /= sum_s_i[sum_s_i != 0]
strength[sum_s_i == 0] = 0
return strength