-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata.py
46 lines (37 loc) · 1.35 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from datasets import load_dataset
from torch.utils.data import Dataset
class BaseDataset(Dataset):
def __init__(self, split):
self._split = split
self.data = []
self.task_prompt = ""
def __len__(self):
return len(self.data)
def correct_casing_finqa(self, text, is_question=False):
if text and text[0].islower():
text = text.capitalize()
if not text.endswith(".") and not is_question:
text += "."
if not text.endswith("?") and is_question:
text += "?"
return text
class DocVQADataset(BaseDataset):
def __init__(self, split):
super().__init__(split)
import pdb
# pdb.set_trace()
self.data = load_dataset("zhangfaen/DocumentVQA", split=split)
self.task_prompt = "<DocVQA>"
def __getitem__(self, idx):
# import pdb
# pdb.set_trace()
example = self.data[idx]
question = self.task_prompt + self.correct_casing_finqa(
example["question"], True
)
first_answer = example["answers"][0]
answers = self.correct_casing_finqa(first_answer)
image = example["image"] # The image is already a PIL Image object
if image.mode != "RGB":
image = image.convert("RGB")
return question, answers, image, example['questionId']