forked from mothur/mothur
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bayesian.cpp
774 lines (592 loc) · 23.7 KB
/
bayesian.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
/*
* bayesian.cpp
* Mothur
*
* Created by westcott on 11/3/09.
* Copyright 2009 Schloss Lab. All rights reserved.
*
*/
#include "bayesian.h"
#include "kmer.hpp"
#include "phylosummary.h"
#include "referencedb.h"
/**************************************************************************************************/
Bayesian::Bayesian(string tfile, string tempFile, string method, int ksize, int cutoff, int i, int tid, bool f, bool sh) :
Classify(), kmerSize(ksize), confidenceThreshold(cutoff), iters(i) {
try {
ReferenceDB* rdb = ReferenceDB::getInstance();
threadID = tid;
flip = f;
shortcuts = sh;
string baseName = tempFile;
if (baseName == "saved") { baseName = rdb->getSavedReference(); }
string baseTName = tfile;
if (baseTName == "saved") { baseTName = rdb->getSavedTaxonomy(); }
/************calculate the probablity that each word will be in a specific taxonomy*************/
string tfileroot = m->getFullPathName(baseTName.substr(0,baseTName.find_last_of(".")+1));
string tempfileroot = m->getRootName(m->getSimpleName(baseName));
string phyloTreeName = tfileroot + "tree.train";
string phyloTreeSumName = tfileroot + "tree.sum";
string probFileName = tfileroot + tempfileroot + char('0'+ kmerSize) + "mer.prob";
string probFileName2 = tfileroot + tempfileroot + char('0'+ kmerSize) + "mer.numNonZero";
ofstream out;
ofstream out2;
ifstream phyloTreeTest(phyloTreeName.c_str());
ifstream probFileTest2(probFileName2.c_str());
ifstream probFileTest(probFileName.c_str());
ifstream probFileTest3(phyloTreeSumName.c_str());
int start = time(NULL);
//if they are there make sure they were created after this release date
bool FilesGood = false;
if(probFileTest && probFileTest2 && phyloTreeTest && probFileTest3){
FilesGood = checkReleaseDate(probFileTest, probFileTest2, phyloTreeTest, probFileTest3);
}
//if you want to save, but you dont need to calculate then just read
if (rdb->save && probFileTest && probFileTest2 && phyloTreeTest && probFileTest3 && FilesGood && (tempFile != "saved")) {
ifstream saveIn;
m->openInputFile(tempFile, saveIn);
while (!saveIn.eof()) {
Sequence temp(saveIn);
m->gobble(saveIn);
rdb->referenceSeqs.push_back(temp);
}
saveIn.close();
}
if(probFileTest && probFileTest2 && phyloTreeTest && probFileTest3 && FilesGood){
if (tempFile == "saved") { m->mothurOutEndLine(); m->mothurOut("Using sequences from " + rdb->getSavedReference() + " that are saved in memory."); m->mothurOutEndLine(); }
m->mothurOut("Reading template taxonomy... "); cout.flush();
phyloTree = new PhyloTree(phyloTreeTest, phyloTreeName);
m->mothurOut("DONE."); m->mothurOutEndLine();
genusNodes = phyloTree->getGenusNodes();
genusTotals = phyloTree->getGenusTotals();
if (tfile == "saved") {
m->mothurOutEndLine(); m->mothurOut("Using probabilties from " + rdb->getSavedTaxonomy() + " that are saved in memory... "); cout.flush();;
wordGenusProb = rdb->wordGenusProb;
WordPairDiffArr = rdb->WordPairDiffArr;
}else {
m->mothurOut("Reading template probabilities... "); cout.flush();
readProbFile(probFileTest, probFileTest2, probFileName, probFileName2);
}
//save probabilities
if (rdb->save) { rdb->wordGenusProb = wordGenusProb; rdb->WordPairDiffArr = WordPairDiffArr; }
}else{
//create search database and names vector
generateDatabaseAndNames(tfile, tempFile, method, ksize, 0.0, 0.0, 0.0, 0.0);
//prevents errors caused by creating shortcut files if you had an error in the sanity check.
if (m->control_pressed) { m->mothurRemove(phyloTreeName); m->mothurRemove(probFileName); m->mothurRemove(probFileName2); }
else{
genusNodes = phyloTree->getGenusNodes();
genusTotals = phyloTree->getGenusTotals();
m->mothurOut("Calculating template taxonomy tree... "); cout.flush();
phyloTree->printTreeNodes(phyloTreeName);
m->mothurOut("DONE."); m->mothurOutEndLine();
m->mothurOut("Calculating template probabilities... "); cout.flush();
numKmers = database->getMaxKmer() + 1;
//initialze probabilities
wordGenusProb.resize(numKmers);
WordPairDiffArr.resize(numKmers);
for (int j = 0; j < wordGenusProb.size(); j++) { wordGenusProb[j].resize(genusNodes.size()); }
ofstream out;
ofstream out2;
#ifdef USE_MPI
int pid;
MPI_Comm_rank(MPI_COMM_WORLD, &pid); //find out who we are
if (pid == 0) {
#endif
if (shortcuts) {
m->openOutputFile(probFileName, out);
//output mothur version
out << "#" << m->getVersion() << endl;
out << numKmers << endl;
m->openOutputFile(probFileName2, out2);
//output mothur version
out2 << "#" << m->getVersion() << endl;
}
#ifdef USE_MPI
}
#endif
//for each word
for (int i = 0; i < numKmers; i++) {
//m->mothurOut("[DEBUG]: kmer = " + toString(i) + "\n");
if (m->control_pressed) { break; }
#ifdef USE_MPI
MPI_Comm_rank(MPI_COMM_WORLD, &pid); //find out who we are
if (pid == 0) {
#endif
if (shortcuts) { out << i << '\t'; }
#ifdef USE_MPI
}
#endif
vector<int> seqsWithWordi = database->getSequencesWithKmer(i);
//for each sequence with that word
vector<int> count; count.resize(genusNodes.size(), 0);
for (int j = 0; j < seqsWithWordi.size(); j++) {
int temp = phyloTree->getGenusIndex(names[seqsWithWordi[j]]);
count[temp]++; //increment count of seq in this genus who have this word
}
//probabilityInTemplate = (# of seqs with that word in template + 0.50) / (total number of seqs in template + 1);
float probabilityInTemplate = (seqsWithWordi.size() + 0.50) / (float) (names.size() + 1);
diffPair tempProb(log(probabilityInTemplate), 0.0);
WordPairDiffArr[i] = tempProb;
int numNotZero = 0;
for (int k = 0; k < genusNodes.size(); k++) {
//probabilityInThisTaxonomy = (# of seqs with that word in this taxonomy + probabilityInTemplate) / (total number of seqs in this taxonomy + 1);
wordGenusProb[i][k] = log((count[k] + probabilityInTemplate) / (float) (genusTotals[k] + 1));
if (count[k] != 0) {
#ifdef USE_MPI
int pid;
MPI_Comm_rank(MPI_COMM_WORLD, &pid); //find out who we are
if (pid == 0) {
#endif
if (shortcuts) { out << k << '\t' << wordGenusProb[i][k] << '\t' ; }
#ifdef USE_MPI
}
#endif
numNotZero++;
}
}
#ifdef USE_MPI
MPI_Comm_rank(MPI_COMM_WORLD, &pid); //find out who we are
if (pid == 0) {
#endif
if (shortcuts) {
out << endl;
out2 << probabilityInTemplate << '\t' << numNotZero << '\t' << log(probabilityInTemplate) << endl;
}
#ifdef USE_MPI
}
#endif
}
#ifdef USE_MPI
MPI_Comm_rank(MPI_COMM_WORLD, &pid); //find out who we are
if (pid == 0) {
#endif
if (shortcuts) {
out.close();
out2.close();
}
#ifdef USE_MPI
}
#endif
//read in new phylotree with less info. - its faster
ifstream phyloTreeTest(phyloTreeName.c_str());
delete phyloTree;
phyloTree = new PhyloTree(phyloTreeTest, phyloTreeName);
//save probabilities
if (rdb->save) { rdb->wordGenusProb = wordGenusProb; rdb->WordPairDiffArr = WordPairDiffArr; }
}
}
if (m->debug) { m->mothurOut("[DEBUG]: about to generateWordPairDiffArr\n"); }
generateWordPairDiffArr();
if (m->debug) { m->mothurOut("[DEBUG]: done generateWordPairDiffArr\n"); }
//save probabilities
if (rdb->save) { rdb->wordGenusProb = wordGenusProb; rdb->WordPairDiffArr = WordPairDiffArr; }
m->mothurOut("DONE."); m->mothurOutEndLine();
m->mothurOut("It took " + toString(time(NULL) - start) + " seconds get probabilities. "); m->mothurOutEndLine();
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "Bayesian");
exit(1);
}
}
/**************************************************************************************************/
Bayesian::~Bayesian() {
try {
if (phyloTree != NULL) { delete phyloTree; }
if (database != NULL) { delete database; }
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "~Bayesian");
exit(1);
}
}
/**************************************************************************************************/
string Bayesian::getTaxonomy(Sequence* seq) {
try {
string tax = "";
Kmer kmer(kmerSize);
flipped = false;
//get words contained in query
//getKmerString returns a string where the index in the string is hte kmer number
//and the character at that index can be converted to be the number of times that kmer was seen
string queryKmerString = kmer.getKmerString(seq->getUnaligned());
vector<int> queryKmers;
for (int i = 0; i < queryKmerString.length()-1; i++) { // the -1 is to ignore any kmer with an N in it
if (queryKmerString[i] != '!') { //this kmer is in the query
queryKmers.push_back(i);
}
}
//if user wants to test reverse compliment and its reversed use that instead
if (flip) {
if (isReversed(queryKmers)) {
flipped = true;
seq->reverseComplement();
queryKmerString = kmer.getKmerString(seq->getUnaligned());
queryKmers.clear();
for (int i = 0; i < queryKmerString.length()-1; i++) { // the -1 is to ignore any kmer with an N in it
if (queryKmerString[i] != '!') { //this kmer is in the query
queryKmers.push_back(i);
}
}
}
}
if (queryKmers.size() == 0) { m->mothurOut(seq->getName() + " is bad. It has no kmers of length " + toString(kmerSize) + "."); m->mothurOutEndLine(); simpleTax = "unknown;"; return "unknown;"; }
int index = getMostProbableTaxonomy(queryKmers);
if (m->control_pressed) { return tax; }
//bootstrap - to set confidenceScore
int numToSelect = queryKmers.size() / 8;
if (m->debug) { m->mothurOut(seq->getName() + "\t"); }
tax = bootstrapResults(queryKmers, index, numToSelect);
if (m->debug) { m->mothurOut("\n"); }
return tax;
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "getTaxonomy");
exit(1);
}
}
/**************************************************************************************************/
string Bayesian::bootstrapResults(vector<int> kmers, int tax, int numToSelect) {
try {
map<int, int> confidenceScores;
//initialize confidences to 0
int seqIndex = tax;
TaxNode seq = phyloTree->get(tax);
confidenceScores[tax] = 0;
while (seq.level != 0) { //while you are not at the root
seqIndex = seq.parent;
confidenceScores[seqIndex] = 0;
seq = phyloTree->get(seq.parent);
}
map<int, int>::iterator itBoot;
map<int, int>::iterator itBoot2;
map<int, int>::iterator itConvert;
for (int i = 0; i < iters; i++) {
if (m->control_pressed) { return "control"; }
vector<int> temp;
for (int j = 0; j < numToSelect; j++) {
int index = int(rand() % kmers.size());
//add word to temp
temp.push_back(kmers[index]);
}
//get taxonomy
int newTax = getMostProbableTaxonomy(temp);
//int newTax = 1;
TaxNode taxonomyTemp = phyloTree->get(newTax);
//add to confidence results
while (taxonomyTemp.level != 0) { //while you are not at the root
itBoot2 = confidenceScores.find(newTax); //is this a classification we already have a count on
if (itBoot2 != confidenceScores.end()) { //this is a classification we need a confidence for
(itBoot2->second)++;
}
newTax = taxonomyTemp.parent;
taxonomyTemp = phyloTree->get(newTax);
}
}
string confidenceTax = "";
simpleTax = "";
int seqTaxIndex = tax;
TaxNode seqTax = phyloTree->get(tax);
while (seqTax.level != 0) { //while you are not at the root
itBoot2 = confidenceScores.find(seqTaxIndex); //is this a classification we already have a count on
int confidence = 0;
if (itBoot2 != confidenceScores.end()) { //already in confidence scores
confidence = itBoot2->second;
}
if (m->debug) { m->mothurOut(seqTax.name + "(" + toString(((confidence/(float)iters) * 100)) + ");"); }
if (((confidence/(float)iters) * 100) >= confidenceThreshold) {
confidenceTax = seqTax.name + "(" + toString(((confidence/(float)iters) * 100)) + ");" + confidenceTax;
simpleTax = seqTax.name + ";" + simpleTax;
}
seqTaxIndex = seqTax.parent;
seqTax = phyloTree->get(seqTax.parent);
}
if (confidenceTax == "") { confidenceTax = "unknown;"; simpleTax = "unknown;"; }
return confidenceTax;
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "bootstrapResults");
exit(1);
}
}
/**************************************************************************************************/
int Bayesian::getMostProbableTaxonomy(vector<int> queryKmer) {
try {
int indexofGenus = 0;
double maxProbability = -1000000.0;
//find taxonomy with highest probability that this sequence is from it
// cout << genusNodes.size() << endl;
for (int k = 0; k < genusNodes.size(); k++) {
//for each taxonomy calc its probability
double prob = 0.0000;
for (int i = 0; i < queryKmer.size(); i++) {
prob += wordGenusProb[queryKmer[i]][k];
}
// cout << phyloTree->get(genusNodes[k]).name << '\t' << prob << endl;
//is this the taxonomy with the greatest probability?
if (prob > maxProbability) {
indexofGenus = genusNodes[k];
maxProbability = prob;
}
}
return indexofGenus;
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "getMostProbableTaxonomy");
exit(1);
}
}
//********************************************************************************************************************
//if it is more probable that the reverse compliment kmers are in the template, then we assume the sequence is reversed.
bool Bayesian::isReversed(vector<int>& queryKmers){
try{
bool reversed = false;
float prob = 0;
float reverseProb = 0;
for (int i = 0; i < queryKmers.size(); i++){
int kmer = queryKmers[i];
if (kmer >= 0){
prob += WordPairDiffArr[kmer].prob;
reverseProb += WordPairDiffArr[kmer].reverseProb;
}
}
if (reverseProb > prob){ reversed = true; }
return reversed;
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "isReversed");
exit(1);
}
}
//********************************************************************************************************************
int Bayesian::generateWordPairDiffArr(){
try{
Kmer kmer(kmerSize);
for (int i = 0; i < WordPairDiffArr.size(); i++) {
int reversedWord = kmer.getReverseKmerNumber(i);
WordPairDiffArr[i].reverseProb = WordPairDiffArr[reversedWord].prob;
}
return 0;
}catch(exception& e) {
m->errorOut(e, "Bayesian", "generateWordPairDiffArr");
exit(1);
}
}
/*************************************************************************************************
map<string, int> Bayesian::parseTaxMap(string newTax) {
try{
map<string, int> parsed;
newTax = newTax.substr(0, newTax.length()-1); //get rid of last ';'
//parse taxonomy
string individual;
while (newTax.find_first_of(';') != -1) {
individual = newTax.substr(0,newTax.find_first_of(';'));
newTax = newTax.substr(newTax.find_first_of(';')+1, newTax.length());
parsed[individual] = 1;
}
//get last one
parsed[newTax] = 1;
return parsed;
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "parseTax");
exit(1);
}
}
**************************************************************************************************/
void Bayesian::readProbFile(ifstream& in, ifstream& inNum, string inName, string inNumName) {
try{
#ifdef USE_MPI
int pid, num, num2, processors;
vector<unsigned long long> positions;
vector<unsigned long long> positions2;
MPI_Status status;
MPI_File inMPI;
MPI_File inMPI2;
MPI_Comm_rank(MPI_COMM_WORLD, &pid); //find out who we are
MPI_Comm_size(MPI_COMM_WORLD, &processors);
int tag = 2001;
char inFileName[1024];
strcpy(inFileName, inNumName.c_str());
char inFileName2[1024];
strcpy(inFileName2, inName.c_str());
MPI_File_open(MPI_COMM_WORLD, inFileName, MPI_MODE_RDONLY, MPI_INFO_NULL, &inMPI); //comm, filename, mode, info, filepointer
MPI_File_open(MPI_COMM_WORLD, inFileName2, MPI_MODE_RDONLY, MPI_INFO_NULL, &inMPI2); //comm, filename, mode, info, filepointer
if (pid == 0) {
positions = m->setFilePosEachLine(inNumName, num);
positions2 = m->setFilePosEachLine(inName, num2);
for(int i = 1; i < processors; i++) {
MPI_Send(&num, 1, MPI_INT, i, tag, MPI_COMM_WORLD);
MPI_Send(&positions[0], (num+1), MPI_LONG, i, tag, MPI_COMM_WORLD);
MPI_Send(&num2, 1, MPI_INT, i, tag, MPI_COMM_WORLD);
MPI_Send(&positions2[0], (num2+1), MPI_LONG, i, tag, MPI_COMM_WORLD);
}
}else{
MPI_Recv(&num, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, &status);
positions.resize(num+1);
MPI_Recv(&positions[0], (num+1), MPI_LONG, 0, tag, MPI_COMM_WORLD, &status);
MPI_Recv(&num2, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, &status);
positions2.resize(num2+1);
MPI_Recv(&positions2[0], (num2+1), MPI_LONG, 0, tag, MPI_COMM_WORLD, &status);
}
//read version
int length = positions2[1] - positions2[0];
char* buf5 = new char[length];
MPI_File_read_at(inMPI2, positions2[0], buf5, length, MPI_CHAR, &status);
delete buf5;
//read numKmers
length = positions2[2] - positions2[1];
char* buf = new char[length];
MPI_File_read_at(inMPI2, positions2[1], buf, length, MPI_CHAR, &status);
string tempBuf = buf;
if (tempBuf.length() > length) { tempBuf = tempBuf.substr(0, length); }
delete buf;
istringstream iss (tempBuf,istringstream::in);
iss >> numKmers;
//initialze probabilities
wordGenusProb.resize(numKmers);
for (int j = 0; j < wordGenusProb.size(); j++) { wordGenusProb[j].resize(genusNodes.size()); }
int kmer, name;
vector<int> numbers; numbers.resize(numKmers);
float prob;
vector<float> zeroCountProb; zeroCountProb.resize(numKmers);
WordPairDiffArr.resize(numKmers);
//read version
length = positions[1] - positions[0];
char* buf6 = new char[length];
MPI_File_read_at(inMPI2, positions[0], buf6, length, MPI_CHAR, &status);
delete buf6;
//read file
for(int i=1;i<num;i++){
//read next sequence
length = positions[i+1] - positions[i];
char* buf4 = new char[length];
MPI_File_read_at(inMPI, positions[i], buf4, length, MPI_CHAR, &status);
tempBuf = buf4;
if (tempBuf.length() > length) { tempBuf = tempBuf.substr(0, length); }
delete buf4;
istringstream iss (tempBuf,istringstream::in);
float probTemp;
iss >> zeroCountProb[i] >> numbers[i] >> probTemp;
WordPairDiffArr[i].prob = probTemp;
}
MPI_File_close(&inMPI);
for(int i=2;i<num2;i++){
//read next sequence
length = positions2[i+1] - positions2[i];
char* buf4 = new char[length];
MPI_File_read_at(inMPI2, positions2[i], buf4, length, MPI_CHAR, &status);
tempBuf = buf4;
if (tempBuf.length() > length) { tempBuf = tempBuf.substr(0, length); }
delete buf4;
istringstream iss (tempBuf,istringstream::in);
iss >> kmer;
//set them all to zero value
for (int i = 0; i < genusNodes.size(); i++) {
wordGenusProb[kmer][i] = log(zeroCountProb[kmer] / (float) (genusTotals[i]+1));
}
//get probs for nonzero values
for (int i = 0; i < numbers[kmer]; i++) {
iss >> name >> prob;
wordGenusProb[kmer][name] = prob;
}
}
MPI_File_close(&inMPI2);
MPI_Barrier(MPI_COMM_WORLD); //make everyone wait - just in case
#else
//read version
string line = m->getline(in); m->gobble(in);
in >> numKmers; m->gobble(in);
//cout << threadID << '\t' << line << '\t' << numKmers << &in << '\t' << &inNum << '\t' << genusNodes.size() << endl;
//initialze probabilities
wordGenusProb.resize(numKmers);
for (int j = 0; j < wordGenusProb.size(); j++) { wordGenusProb[j].resize(genusNodes.size()); }
int kmer, name, count; count = 0;
vector<int> num; num.resize(numKmers);
float prob;
vector<float> zeroCountProb; zeroCountProb.resize(numKmers);
WordPairDiffArr.resize(numKmers);
//read version
string line2 = m->getline(inNum); m->gobble(inNum);
float probTemp;
//cout << threadID << '\t' << line2 << '\t' << this << endl;
while (inNum) {
inNum >> zeroCountProb[count] >> num[count] >> probTemp;
WordPairDiffArr[count].prob = probTemp;
count++;
m->gobble(inNum);
//cout << threadID << '\t' << count << endl;
}
inNum.close();
//cout << threadID << '\t' << "here1 " << &wordGenusProb << '\t' << &num << endl; //
//cout << threadID << '\t' << &genusTotals << '\t' << endl;
//cout << threadID << '\t' << genusNodes.size() << endl;
while(in) {
in >> kmer;
//cout << threadID << '\t' << kmer << endl;
//set them all to zero value
for (int i = 0; i < genusNodes.size(); i++) {
wordGenusProb[kmer][i] = log(zeroCountProb[kmer] / (float) (genusTotals[i]+1));
}
//cout << threadID << '\t' << num[kmer] << "here" << endl;
//get probs for nonzero values
for (int i = 0; i < num[kmer]; i++) {
in >> name >> prob;
wordGenusProb[kmer][name] = prob;
}
m->gobble(in);
}
in.close();
//cout << threadID << '\t' << "here" << endl;
#endif
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "readProbFile");
exit(1);
}
}
/**************************************************************************************************/
bool Bayesian::checkReleaseDate(ifstream& file1, ifstream& file2, ifstream& file3, ifstream& file4) {
try {
bool good = true;
vector<string> lines;
lines.push_back(m->getline(file1));
lines.push_back(m->getline(file2));
lines.push_back(m->getline(file3));
lines.push_back(m->getline(file4));
//before we added this check
if ((lines[0][0] != '#') || (lines[1][0] != '#') || (lines[2][0] != '#') || (lines[3][0] != '#')) { good = false; }
else {
//rip off #
for (int i = 0; i < lines.size(); i++) { lines[i] = lines[i].substr(1); }
//get mothurs current version
string version = m->getVersion();
vector<string> versionVector;
m->splitAtChar(version, versionVector, '.');
//check each files version
for (int i = 0; i < lines.size(); i++) {
vector<string> linesVector;
m->splitAtChar(lines[i], linesVector, '.');
if (versionVector.size() != linesVector.size()) { good = false; break; }
else {
for (int j = 0; j < versionVector.size(); j++) {
int num1, num2;
convert(versionVector[j], num1);
convert(linesVector[j], num2);
//if mothurs version is newer than this files version, then we want to remake it
if (num1 > num2) { good = false; break; }
}
}
if (!good) { break; }
}
}
if (!good) { file1.close(); file2.close(); file3.close(); file4.close(); }
else { file1.seekg(0); file2.seekg(0); file3.seekg(0); file4.seekg(0); }
return good;
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "checkReleaseDate");
exit(1);
}
}
/**************************************************************************************************/