forked from HMFazleRabbi/TF_Research_Api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bert_models.py
327 lines (288 loc) · 13.1 KB
/
bert_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT models that are compatible with TF 2.0."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gin
import tensorflow as tf
import tensorflow_hub as hub
from official.modeling import tf_utils
from official.nlp.albert import configs as albert_configs
from official.nlp.bert import configs
from official.nlp.modeling import losses
from official.nlp.modeling import models
from official.nlp.modeling import networks
class BertPretrainLossAndMetricLayer(tf.keras.layers.Layer):
"""Returns layer that computes custom loss and metrics for pretraining."""
def __init__(self, vocab_size, **kwargs):
super(BertPretrainLossAndMetricLayer, self).__init__(**kwargs)
self._vocab_size = vocab_size
self.config = {
'vocab_size': vocab_size,
}
def _add_metrics(self, lm_output, lm_labels, lm_label_weights,
lm_example_loss, sentence_output, sentence_labels,
next_sentence_loss):
"""Adds metrics."""
masked_lm_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
lm_labels, lm_output)
numerator = tf.reduce_sum(masked_lm_accuracy * lm_label_weights)
denominator = tf.reduce_sum(lm_label_weights) + 1e-5
masked_lm_accuracy = numerator / denominator
self.add_metric(
masked_lm_accuracy, name='masked_lm_accuracy', aggregation='mean')
self.add_metric(lm_example_loss, name='lm_example_loss', aggregation='mean')
next_sentence_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
sentence_labels, sentence_output)
self.add_metric(
next_sentence_accuracy,
name='next_sentence_accuracy',
aggregation='mean')
self.add_metric(
next_sentence_loss, name='next_sentence_loss', aggregation='mean')
def call(self, lm_output, sentence_output, lm_label_ids, lm_label_weights,
sentence_labels):
"""Implements call() for the layer."""
lm_label_weights = tf.cast(lm_label_weights, tf.float32)
lm_output = tf.cast(lm_output, tf.float32)
sentence_output = tf.cast(sentence_output, tf.float32)
mask_label_loss = losses.weighted_sparse_categorical_crossentropy_loss(
labels=lm_label_ids, predictions=lm_output, weights=lm_label_weights)
sentence_loss = losses.weighted_sparse_categorical_crossentropy_loss(
labels=sentence_labels, predictions=sentence_output)
loss = mask_label_loss + sentence_loss
batch_shape = tf.slice(tf.shape(sentence_labels), [0], [1])
# TODO(hongkuny): Avoids the hack and switches add_loss.
final_loss = tf.fill(batch_shape, loss)
self._add_metrics(lm_output, lm_label_ids, lm_label_weights,
mask_label_loss, sentence_output, sentence_labels,
sentence_loss)
return final_loss
@gin.configurable
def get_transformer_encoder(bert_config,
sequence_length,
transformer_encoder_cls=None):
"""Gets a 'TransformerEncoder' object.
Args:
bert_config: A 'modeling.BertConfig' or 'modeling.AlbertConfig' object.
sequence_length: Maximum sequence length of the training data.
transformer_encoder_cls: A EncoderScaffold class. If it is None, uses the
default BERT encoder implementation.
Returns:
A networks.TransformerEncoder object.
"""
if transformer_encoder_cls is not None:
# TODO(hongkuny): evaluate if it is better to put cfg definition in gin.
embedding_cfg = dict(
vocab_size=bert_config.vocab_size,
type_vocab_size=bert_config.type_vocab_size,
hidden_size=bert_config.hidden_size,
seq_length=sequence_length,
max_seq_length=bert_config.max_position_embeddings,
initializer=tf.keras.initializers.TruncatedNormal(
stddev=bert_config.initializer_range),
dropout_rate=bert_config.hidden_dropout_prob,
)
hidden_cfg = dict(
num_attention_heads=bert_config.num_attention_heads,
intermediate_size=bert_config.intermediate_size,
intermediate_activation=tf_utils.get_activation(bert_config.hidden_act),
dropout_rate=bert_config.hidden_dropout_prob,
attention_dropout_rate=bert_config.attention_probs_dropout_prob,
)
kwargs = dict(embedding_cfg=embedding_cfg, hidden_cfg=hidden_cfg,
num_hidden_instances=bert_config.num_hidden_layers,)
# Relies on gin configuration to define the Transformer encoder arguments.
return transformer_encoder_cls(**kwargs)
kwargs = dict(
vocab_size=bert_config.vocab_size,
hidden_size=bert_config.hidden_size,
num_layers=bert_config.num_hidden_layers,
num_attention_heads=bert_config.num_attention_heads,
intermediate_size=bert_config.intermediate_size,
activation=tf_utils.get_activation(bert_config.hidden_act),
dropout_rate=bert_config.hidden_dropout_prob,
attention_dropout_rate=bert_config.attention_probs_dropout_prob,
sequence_length=sequence_length,
max_sequence_length=bert_config.max_position_embeddings,
type_vocab_size=bert_config.type_vocab_size,
initializer=tf.keras.initializers.TruncatedNormal(
stddev=bert_config.initializer_range))
if isinstance(bert_config, albert_configs.AlbertConfig):
kwargs['embedding_width'] = bert_config.embedding_size
return networks.AlbertTransformerEncoder(**kwargs)
else:
assert isinstance(bert_config, configs.BertConfig)
return networks.TransformerEncoder(**kwargs)
def pretrain_model(bert_config,
seq_length,
max_predictions_per_seq,
initializer=None):
"""Returns model to be used for pre-training.
Args:
bert_config: Configuration that defines the core BERT model.
seq_length: Maximum sequence length of the training data.
max_predictions_per_seq: Maximum number of tokens in sequence to mask out
and use for pretraining.
initializer: Initializer for weights in BertPretrainer.
Returns:
Pretraining model as well as core BERT submodel from which to save
weights after pretraining.
"""
input_word_ids = tf.keras.layers.Input(
shape=(seq_length,), name='input_word_ids', dtype=tf.int32)
input_mask = tf.keras.layers.Input(
shape=(seq_length,), name='input_mask', dtype=tf.int32)
input_type_ids = tf.keras.layers.Input(
shape=(seq_length,), name='input_type_ids', dtype=tf.int32)
masked_lm_positions = tf.keras.layers.Input(
shape=(max_predictions_per_seq,),
name='masked_lm_positions',
dtype=tf.int32)
masked_lm_ids = tf.keras.layers.Input(
shape=(max_predictions_per_seq,), name='masked_lm_ids', dtype=tf.int32)
masked_lm_weights = tf.keras.layers.Input(
shape=(max_predictions_per_seq,),
name='masked_lm_weights',
dtype=tf.int32)
next_sentence_labels = tf.keras.layers.Input(
shape=(1,), name='next_sentence_labels', dtype=tf.int32)
transformer_encoder = get_transformer_encoder(bert_config, seq_length)
if initializer is None:
initializer = tf.keras.initializers.TruncatedNormal(
stddev=bert_config.initializer_range)
pretrainer_model = models.BertPretrainer(
network=transformer_encoder,
num_classes=2, # The next sentence prediction label has two classes.
num_token_predictions=max_predictions_per_seq,
initializer=initializer,
output='predictions')
lm_output, sentence_output = pretrainer_model(
[input_word_ids, input_mask, input_type_ids, masked_lm_positions])
pretrain_loss_layer = BertPretrainLossAndMetricLayer(
vocab_size=bert_config.vocab_size)
output_loss = pretrain_loss_layer(lm_output, sentence_output, masked_lm_ids,
masked_lm_weights, next_sentence_labels)
keras_model = tf.keras.Model(
inputs={
'input_word_ids': input_word_ids,
'input_mask': input_mask,
'input_type_ids': input_type_ids,
'masked_lm_positions': masked_lm_positions,
'masked_lm_ids': masked_lm_ids,
'masked_lm_weights': masked_lm_weights,
'next_sentence_labels': next_sentence_labels,
},
outputs=output_loss)
return keras_model, transformer_encoder
def squad_model(bert_config,
max_seq_length,
initializer=None,
hub_module_url=None,
hub_module_trainable=True):
"""Returns BERT Squad model along with core BERT model to import weights.
Args:
bert_config: BertConfig, the config defines the core Bert model.
max_seq_length: integer, the maximum input sequence length.
initializer: Initializer for the final dense layer in the span labeler.
Defaulted to TruncatedNormal initializer.
hub_module_url: TF-Hub path/url to Bert module.
hub_module_trainable: True to finetune layers in the hub module.
Returns:
A tuple of (1) keras model that outputs start logits and end logits and
(2) the core BERT transformer encoder.
"""
if initializer is None:
initializer = tf.keras.initializers.TruncatedNormal(
stddev=bert_config.initializer_range)
if not hub_module_url:
bert_encoder = get_transformer_encoder(bert_config, max_seq_length)
return models.BertSpanLabeler(
network=bert_encoder, initializer=initializer), bert_encoder
input_word_ids = tf.keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
input_mask = tf.keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
input_type_ids = tf.keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
core_model = hub.KerasLayer(hub_module_url, trainable=hub_module_trainable)
pooled_output, sequence_output = core_model(
[input_word_ids, input_mask, input_type_ids])
bert_encoder = tf.keras.Model(
inputs={
'input_word_ids': input_word_ids,
'input_mask': input_mask,
'input_type_ids': input_type_ids,
},
outputs=[sequence_output, pooled_output],
name='core_model')
return models.BertSpanLabeler(
network=bert_encoder, initializer=initializer), bert_encoder
def classifier_model(bert_config,
num_labels,
max_seq_length,
final_layer_initializer=None,
hub_module_url=None,
hub_module_trainable=True):
"""BERT classifier model in functional API style.
Construct a Keras model for predicting `num_labels` outputs from an input with
maximum sequence length `max_seq_length`.
Args:
bert_config: BertConfig or AlbertConfig, the config defines the core BERT or
ALBERT model.
num_labels: integer, the number of classes.
max_seq_length: integer, the maximum input sequence length.
final_layer_initializer: Initializer for final dense layer. Defaulted
TruncatedNormal initializer.
hub_module_url: TF-Hub path/url to Bert module.
hub_module_trainable: True to finetune layers in the hub module.
Returns:
Combined prediction model (words, mask, type) -> (one-hot labels)
BERT sub-model (words, mask, type) -> (bert_outputs)
"""
if final_layer_initializer is not None:
initializer = final_layer_initializer
else:
initializer = tf.keras.initializers.TruncatedNormal(
stddev=bert_config.initializer_range)
if not hub_module_url:
bert_encoder = get_transformer_encoder(bert_config, max_seq_length)
return models.BertClassifier(
bert_encoder,
num_classes=num_labels,
dropout_rate=bert_config.hidden_dropout_prob,
initializer=initializer), bert_encoder
input_word_ids = tf.keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
input_mask = tf.keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
input_type_ids = tf.keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
bert_model = hub.KerasLayer(
hub_module_url, trainable=hub_module_trainable)
pooled_output, _ = bert_model([input_word_ids, input_mask, input_type_ids])
output = tf.keras.layers.Dropout(rate=bert_config.hidden_dropout_prob)(
pooled_output)
output = tf.keras.layers.Dense(
num_labels, kernel_initializer=initializer, name='output')(
output)
return tf.keras.Model(
inputs={
'input_word_ids': input_word_ids,
'input_mask': input_mask,
'input_type_ids': input_type_ids
},
outputs=output), bert_model