forked from snowmanman/CrackNex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·213 lines (171 loc) · 7.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from dataset.fewshot import FewShot
from model.CrackNex_matching import CrackNex
from util.utils import count_params, set_seed, calc_crack_pixel_weight, mIOU
import argparse
from copy import deepcopy
import os
import time
import torch
from torch.nn import CrossEntropyLoss, DataParallel
from torch.optim import SGD
from torch.utils.data import DataLoader
from tqdm import tqdm
def parse_args():
parser = argparse.ArgumentParser(description='Mining Latent Classes for Few-shot Segmentation')
# basic arguments
parser.add_argument('--data-root',
type=str,
required=True,
help='root path of training dataset')
parser.add_argument('--dataset',
type=str,
default='LCSD',
choices=['llCrackSeg9k', 'LCSD'],
help='training dataset')
parser.add_argument('--batch-size',
type=int,
default=1,
help='batch size of training')
parser.add_argument('--lr',
type=float,
default=0.001,
help='learning rate')
parser.add_argument('--loss',
type=str,
choices=['CE', 'weightedCE'],
default='CE',
help='loss function')
parser.add_argument('--crop-size',
type=int,
default=400,
help='cropping size of training samples')
parser.add_argument('--backbone',
type=str,
choices=['resnet50', 'resnet101'],
default='resnet50',
help='backbone of semantic segmentation model')
# few-shot training arguments
parser.add_argument('--shot',
type=int,
default=1,
help='number of support pairs')
parser.add_argument('--episode',
type=int,
default=6000,
choices=[6000, 18000, 24000, 36000],
help='total episodes of training')
parser.add_argument('--snapshot',
type=int,
default=200,
choices=[200, 1200, 2000],
help='save the model after each snapshot episodes')
parser.add_argument('--seed',
type=int,
default=0,
help='random seed to generate tesing samples')
args = parser.parse_args()
return args
def evaluate(model, dataloader, args):
tbar = tqdm(dataloader)
num_classes = 3
metric = mIOU(num_classes)
for i, (img_s_list, hiseq_s_list, mask_s_list, img_q, hiseq_q, mask_q, cls, _, id_q) in enumerate(tbar):
img_q, hiseq_q, mask_q = img_q.cuda(), hiseq_q.cuda(), mask_q.cuda()
for k in range(len(img_s_list)):
img_s_list[k], hiseq_s_list[k], mask_s_list[k] = img_s_list[k].cuda(), hiseq_s_list[k].cuda(), mask_s_list[k].cuda()
cls = cls[0].item()
with torch.no_grad():
out_ls = model(img_s_list, hiseq_s_list, mask_s_list, img_q, hiseq_q, mask_q)
pred = torch.argmax(out_ls[0], dim=1)
pred[pred == 1] = cls
mask_q[mask_q == 1] = cls
metric.add_batch(pred.cpu().numpy(), mask_q.cpu().numpy())
tbar.set_description("Testing mIOU: %.2f" % (metric.evaluate() * 100.0))
return metric.evaluate() * 100.0
def main():
args = parse_args()
print('\n' + str(args))
save_path = 'outdir/models/%s' % (args.dataset)
os.makedirs(save_path, exist_ok=True)
trainset = FewShot(args.data_root, args.crop_size,
'train', args.shot, args.snapshot)
trainloader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True,
pin_memory=True, num_workers=0, drop_last=True)
testset = FewShot(args.data_root, None, 'val',
args.shot, 41 if args.dataset == 'LCSD' else 1486)
testloader = DataLoader(testset, batch_size=1, shuffle=False,
pin_memory=True, num_workers=0, drop_last=False)
model = CrackNex(args.backbone)
print('\nParams: %.1fM' % count_params(model))
for param in model.rgb_layer0.parameters():
param.requires_grad = False
for param in model.rgb_layer1.parameters():
param.requires_grad = False
for param in model.ref_layer0.parameters():
param.requires_grad = False
for param in model.ref_layer1.parameters():
param.requires_grad = False
for module in model.modules():
if isinstance(module, torch.nn.BatchNorm2d):
for param in module.parameters():
param.requires_grad = False
if args.loss == 'CE':
criterion = CrossEntropyLoss(ignore_index=255)
elif args.loss == 'weightedCE':
crack_weight = [1, 0.4] * calc_crack_pixel_weight(args.data_root)
print(f'positive weight: {crack_weight}')
criterion = CrossEntropyLoss(weight=torch.Tensor([crack_weight]).to('cuda').squeeze(0), ignore_index=255)
optimizer = SGD([param for param in model.parameters() if param.requires_grad],
lr=args.lr, momentum=0.9, weight_decay=5e-4)
model = DataParallel(model).cuda()
best_model = None
iters = 0
total_iters = args.episode // args.batch_size
lr_decay_iters = [total_iters // 3, total_iters * 2 // 3]
previous_best = 0
# each snapshot is considered as an epoch
for epoch in range(args.episode // args.snapshot):
print("\n==> Epoch %i, learning rate = %.5f\t\t\t\t Previous best = %.2f"
% (epoch, optimizer.param_groups[0]["lr"], previous_best))
model.train()
for module in model.modules():
if isinstance(module, torch.nn.BatchNorm2d):
module.eval()
total_loss = 0.0
tbar = tqdm(trainloader)
set_seed(int(time.time()))
for i, (img_s_list, hiseq_s_list, mask_s_list, img_q, hiseq_q, mask_q, _, _, _) in enumerate(tbar):
img_q, hiseq_q, mask_q = img_q.cuda(), hiseq_q.cuda(), mask_q.cuda()
for k in range(len(img_s_list)):
img_s_list[k], hiseq_s_list[k], mask_s_list[k] = img_s_list[k].cuda(), hiseq_s_list[k].cuda(), mask_s_list[k].cuda()
out_ls = model(img_s_list, hiseq_s_list, mask_s_list, img_q, hiseq_q, mask_q)
mask_s = torch.cat(mask_s_list, dim=0)
loss = criterion(out_ls[0], mask_q) + criterion(out_ls[1], mask_q) + criterion(out_ls[2], mask_q) + criterion(out_ls[3], mask_s) * 0.2
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
iters += 1
if iters in lr_decay_iters:
optimizer.param_groups[0]['lr'] /= 10.0
tbar.set_description('Loss: %.3f' % (total_loss / (i + 1)))
model.eval()
set_seed(args.seed)
miou = evaluate(model, testloader, args)
if miou >= previous_best:
best_model = deepcopy(model)
previous_best = miou
print('\nEvaluating on 5 seeds.....')
total_miou = 0.0
for seed in range(5):
print('\nRun %i:' % (seed + 1))
set_seed(args.seed + seed)
miou = evaluate(best_model, testloader, args)
total_miou += miou
print('\n' + '*' * 32)
print('Averaged mIOU on 5 seeds: %.2f' % (total_miou / 5))
print('*' * 32 + '\n')
torch.save(best_model.module.state_dict(),
os.path.join(save_path, '%s_%ishot_%.2f.pth' % (args.backbone, args.shot, total_miou / 5)))
if __name__ == '__main__':
main()