forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
util.js
99 lines (94 loc) · 3.14 KB
/
util.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
// Convert an image vector (length 784) representing an MNIST image into
// a human-friendly text representation.
//
// Args:
// imageVector: An Array of Numbers of length `imageSize * imageSize`.
//
// Returns:
// A String representing the image.
export function imageVectorToText(imageVector, imageSize) {
if (imageVector.length !== imageSize * imageSize) {
throw new Error(
'Incorrect length of image vector (expected ' + imageSize * imageSize +
'; got ' + imageVector.length + ')');
}
let text = '';
for (let i = 0; i < imageSize * imageSize; ++i) {
if (i % imageSize === 0 && i > 0) {
text += '\n';
}
const numString = imageVector[i].toString();
text +=
' '.repeat(numString.length < 4 ? 4 - numString.length : 0) + numString;
}
return text;
}
// Convert a text representation of an MNIST image into an deeplearn Tensor4D
// of shape [1, imageSize, imageSize, 1].
//
// Args:
// text: A String representing the MNIST image.
//
// Returns:
// A Tensor4D instance representing the image, in a size-1 batch.
// Shape: [1, imageSize, imageSize, 1].
export function textToImageArray(text, imageSize) {
// Split into rows.
const pixels = [];
const rows = text.split('\n');
for (const row of rows) {
const tokens = row.split(' ');
for (const token of tokens) {
if (token.length > 0) {
pixels.push(Number.parseInt(token) / 255);
}
}
}
if (pixels.length !== imageSize * imageSize) {
throw new Error(
'Incorrect length of image vector (expected ' + imageSize * imageSize +
'; got ' + pixels.length + ')');
}
return tf.tensor4d(pixels, [1, imageSize, imageSize, 1]);
}
export function indexToOneHot(index, numClasses) {
const oneHot = [];
for (let i = 0; i < numClasses; ++i) {
oneHot.push(i === index ? 1 : 0);
}
return oneHot;
}
export function convertDataToTensors(data, numClasses) {
const numExamples = data.length;
const imgRows = data[0].x.length;
const imgCols = data[0].x[0].length;
const xs = [];
const ys = [];
data.map(example => {
xs.push(example.x);
ys.push(this.indexToOneHot(example.y, numClasses));
});
let xsTensor = tf.reshape(
tf.tensor3d(xs, [numExamples, imgRows, imgCols]),
[numExamples, imgRows, imgCols, 1]);
xsTensor = tf.mul(tf.scalar(1 / 255), xsTensor);
const ysTensor = tf.tensor2d(ys, [numExamples, numClasses]);
return {x: xsTensor, y: ysTensor};
}