-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelp.html
686 lines (557 loc) · 18.4 KB
/
help.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
<html>
<head>
</head>
<body>
<tt>
<center>
<img src="man.jpg">
<p>
<a href="Eigenmath.pdf"">Download the Eigenmath manual (PDF)</a>
<p>
<a href="examples.html">Example scripts</a>
<p>
<hr>
<p>
<table cellspacing=20><tr><td valign="top"><tt>
<a href="#abs">abs</a><br>
<a href="#adj">adj</a><br>
<a href="#and">and</a><br>
<a href="#arccos">arccos</a><br>
<a href="#arccosh">arccosh</a><br>
<a href="#arcsin">arcsin</a><br>
<a href="#arcsinh">arcsinh</a><br>
<a href="#arctan">arctan</a><br>
<a href="#arctanh">arctanh</a><br>
<a href="#arg">arg</a><br>
<a href="#atomize">atomize</a><br>
<a href="#ceiling">ceiling</a><br>
<a href="#check">check</a><br>
<a href="#choose">choose</a><br>
</tt></td><td valign="top"><tt>
<a href="#circexp">circexp</a><br>
<a href="#coeff">coeff</a><br>
<a href="#cofactor">cofactor</a><br>
<a href="#conj">conj</a><br>
<a href="#contract">contract</a><br>
<a href="#cos">cos</a><br>
<a href="#cosh">cosh</a><br>
<a href="#cross">cross</a><br>
<a href="#curl">curl</a><br>
<a href="#d">d</a><br>
<a href="#defint">defint</a><br>
<a href="#deg">deg</a><br>
<a href="#denominator">denominator</a><br>
</tt></td><td valign="top"><tt>
<a href="#det">det</a><br>
<a href="#dim">dim</a><br>
<a href="#do">do</a><br>
<a href="#dot">dot</a><br>
<a href="#draw">draw</a><br>
<a href="#eigen">eigen</a><br>
<a href="#erf">erf</a><br>
<a href="#erfc">erfc</a><br>
<a href="#eval">eval</a><br>
<a href="#exp">exp</a><br>
<a href="#expand">expand</a><br>
<a href="#expcos">expcos</a><br>
<a href="#expsin">expsin</a><br>
<a href="#factor">factor</a><br>
</tt></td><td valign="top"><tt>
<a href="#factorial">factorial</a><br>
<a href="#filter">filter</a><br>
<a href="#float">float</a><br>
<a href="#floor">floor</a><br>
<a href="#for">for</a><br>
<a href="#gcd">gcd</a><br>
<a href="#hermite">hermite</a><br>
<a href="#hilbert">hilbert</a><br>
<a href="#imag">imag</a><br>
<a href="#inner">inner</a><br>
<a href="#integral">integral</a><br>
<a href="#inv">inv</a><br>
<a href="#isprime">isprime</a><br>
</tt></td><td valign="top"><tt>
<a href="#laguerre">laguerre</a><br>
<a href="#lcm">lcm</a><br>
<a href="#leading">leading</a><br>
<a href="#legendre">legendre</a><br>
<a href="#log">log</a><br>
<a href="#mag">mag</a><br>
<a href="#mod">mod</a><br>
<a href="#not">not</a><br>
<a href="#nroots">nroots</a><br>
<a href="#numerator">numerator</a><br>
<a href="#or">or</a><br>
<a href="#outer">outer</a><br>
<a href="#polar">polar</a><br>
</tt></td><td valign="top"><tt>
<a href="#prime">prime</a><br>
<a href="#print">print</a><br>
<a href="#product">product</a><br>
<a href="#quote">quote</a><br>
<a href="#quotient">quotient</a><br>
<a href="#rank">rank</a><br>
<a href="#rationalize">rationalize</a><br>
<a href="#real">real</a><br>
<a href="#rect">rect</a><br>
<a href="#roots">roots</a><br>
<a href="#simplify">simplify</a><br>
<a href="#sin">sin</a><br>
<a href="#sinh">sinh</a><br>
</tt></td><td valign="top"><tt>
<a href="#sqrt">sqrt</a><br>
<a href="#stop">stop</a><br>
<a href="#subst">subst</a><br>
<a href="#sum">sum</a><br>
<a href="#tan">tan</a><br>
<a href="#tanh">tanh</a><br>
<a href="#taylor">taylor</a><br>
<a href="#test">test</a><br>
<a href="#transpose">transpose</a><br>
<a href="#unit">unit</a><br>
<a href="#zero">zero</a><br>
</tt></td></tr></table>
<p>
<hr>
</center>
<p>
<h1><tt><a name="abs">abs(<i>x</i>)</a></tt></h1>
Returns the absolute value or vector length of x.
<a href="src/abs.c.html">src</a>
<p>
<h1><tt><a name="adj">adj(<i>m</i>)</a></tt></h1>
Returns the adjunct of matrix m.
The inverse of m is equal to adj(m) divided by det(m).
<a href="src/adj.c.html">src</a>
<p><h1><tt><a name="and">and(<i>a,b,...</i>)</a></tt></h1>
Logical-and of predicate expressions.
<a href="src/test.c.html#eval_and">src</a>
<p>
<h1><tt><a name="arccos">arccos(<i>x</i>)</a></tt></h1>
Returns the inverse cosine of x.
<a href="src/arccos.c.html">src</a>
<p>
<h1><tt><a name="arccosh">arccosh(<i>x</i>)</a></tt></h1>
Returns the inverse hyperbolic cosine of x.
<a href="src/arccosh.c.html">src</a>
<p>
<h1><tt><a name="arcsin">arcsin(<i>x</i>)</a></tt></h1>
Returns the inverse sine of x.
<a href="src/arcsin.c.html">src</a>
<p>
<h1><tt><a name="arcsinh">arcsinh(<i>x</i>)</a></tt></h1>
Returns the inverse hyperbolic sine of x.
<a href="src/arcsinh.c.html">src</a>
<p>
<h1><tt><a name="arctan">arctan(<i>x</i>)</a></tt></h1>
Returns the inverse tangent of x.
<a href="src/arctan.c.html">src</a>
<p>
<h1><tt><a name="arctanh">arctanh(<i>x</i>)</a></tt></h1>
Returns the inverse hyperbolic tangent of x.
<a href="src/arctanh.c.html">src</a>
<p>
<h1><tt><a name="arg">arg(<i>z</i>)</a></tt></h1>
Returns the angle of complex z.
<a href="src/arg.c.html">src</a>
<p>
<h1><tt><a name="atomize">atomize(<i>x</i>)</a></tt></h1>
Returns a vector containing the subexpressions of expression x.
<a href="src/atomize.c.html">src</a>
<p>
<h1><tt><a name="ceiling">ceiling(<i>x</i>)</a></tt></h1>
Returns the smallest integer not less than x.
<a href="src/ceiling.c.html">src</a>
<p>
<h1><tt><a name="check">check(<i>x</i>)</a></tt></h1>
If x is true then continue, else stop.
<a href="src/eval.c.html#eval_check">src </a>
<p>
<h1><tt><a name="choose">choose(<i>n,k</i>)</a></tt></h1>
Returns the number of combinations of n items taken k at a time.
<a href="src/choose.c.html">src</a>
<p>
<h1><tt><a name="circexp">circexp(<i>x</i>)</a></tt></h1>
Returns expression x with circular and hyperbolic functions converted to exponential forms.
Sometimes this will simplify an expression.
<a href="src/circexp.c.html">src</a>
<p>
<h1><tt><a name="coeff">coeff(<i>p,x,n</i>)</a></tt></h1>
Returns the coefficient of x to the n in polynomial p.
The x argument can be omitted for polynomials in x.
<a href="src/coeff.c.html">src</a>
<p>
<h1><tt><a name="cofactor">cofactor(<i>m,i,j</i>)</a></tt></h1>
Returns the cofactor of m for row i and column j.
<a href="src/cofactor.c.html">src</a>
<p>
<h1><tt><a name="conj">conj(<i>z</i>)</a></tt></h1>
Returns the complex conjugate of z.
<a href="src/conj.c.html">src</a>
<p>
<h1><tt><a name="contract">contract(<i>a,i,j</i>)</a></tt></h1>
Returns "a" summed over indices i and j.
If i and j are omitted then 1 and 2 are used.
contract(m) is equivalent to the trace of matrix m.
<a href="src/contract.c.html">src</a>
<p>
<h1><tt><a name="cos">cos(<i>x</i>)</a></tt></h1>
Returns the cosine of x.
<a href="src/cos.c.html">src</a>
<p>
<h1><tt><a name="cosh">cosh(<i>x</i>)</a></tt></h1>
Returns the hyperbolic cosine of x.
<a href="src/cosh.c.html">src</a>
<p>
<h1><tt><a name="cross">cross(<i>u,v</i>)</a></tt></h1>
Returns the cross product of vectors u and v.
<p>
<h1><tt><a name="curl">curl(<i>u</i>)</a></tt></h1>
Returns the curl of vector u.
<p>
<h1><tt><a name="d">d(<i>f,x</i>)</a></tt></h1>
Returns the partial derivative of f with respect to x.
<a href="src/derivative.c.html">src</a>
<p>
<h1><tt><a name="defint">defint(<i>f,x,a,b</i>)</a></tt></h1>
Returns the definite integral of f with respect to x
evaluated from "a" to b.
The argument list can be extended for multiple integrals.
For example, defint(f,x,a,b,y,c,d).
<a href="src/defint.c.html"> src</a>
<p>
<h1><tt><a name="deg">deg(<i>p,x</i>)</a></tt></h1>
Returns the degree of polynomial p(x).
<a href="src/degree.c.html">src</a>
<p>
<h1><tt><a name="denominator">denominator(<i>x</i>)</a></tt></h1>
Returns the denominator of expression x.
<a href="src/denominator.c.html">src</a>
<p>
<h1><tt><a name="det">det(<i>m</i>)</a></tt></h1>
Returns the determinant of matrix m.
<a href="src/det.c.html">src</a>
<p>
<h1><tt><a name="dim">dim(<i>a,n</i>)</a></tt></h1>
Returns the cardinality of the nth index of tensor "a".
<a href="src/eval.c.html#eval_dim">src</a>
<p>
<h1><tt><a name="do">do(<i>a,b,...</i>)</a></tt></h1>
Evaluates each argument from left to right.
Returns the result of the last argument.
<a href="src/eval.c.html#eval_do">src</a>
<p>
<h1><tt><a name="dot">dot(<i>a,b,...</i>)</a></tt></h1>
Returns the dot or inner product of tensors.
<a href="src/inner.c.html">src</a>
<p>
<h1><tt><a name="draw">draw(<i>f,x</i>)</a></tt></h1>
Draws a graph of f(x).
Drawing ranges can be set with xrange and yrange.
<a href="src/draw.c.html">src</a>
<p>
<h1><tt><a name="eigen">eigen(<i>m</i>)</a></tt></h1>
<h1><tt>eigenval(<i>m</i>)</tt></h1>
<h1><tt>eigenvec(<i>m</i>)</tt></h1>
These functions compute eigenvalues and eigenvectors numerically.
Matrix m must be both numerical and symmetric.
The eigenval function returns a matrix with the eigenvalues along
the diagonal.
The eigenvec function returns a matrix with the eigenvectors arranged as row
vectors.
The eigen function does not return anything but stores the eigenvalue matrix
in D and the eigenvector matrix in Q.
The rows of Q are the eigenvectors of m, thus m = dot(transpose(Q),D,Q).
<a href="src/eigen.c.html">src</a>
<!--
<p>
Example 1. Check the relation AX = lambda X where lambda is an eigenvalue and
X is the associated eigenvector.
<pre>
<i>Enter</i>
A = hilbert(3)
eigen(A)
lambda = D[1,1]
X = Q[1]
dot(A,X) - lambda X
<i>Result</i>
-1.16435e-14
-6.46705e-15
-4.55191e-15
</pre>
<p>
Example 2: Check the relation A = Q<sup>T</sup>DQ.
<pre>
<i>Enter</i>
A - dot(transpose(Q),D,Q)
<i>Result</i>
6.27365e-12 -1.58236e-11 1.81902e-11
-1.58236e-11 -1.95365e-11 2.56514e-12
1.81902e-11 2.56514e-12 1.32627e-11
</pre>
-->
<p>
<h1><tt><a name="erf">erf(<i>x</i>)</a></tt></h1>
Error function of x.
<a href="src/erf.c.html">src</a>
<p>
<h1><tt><a name="erfc">erfc(<i>x</i>)</a></tt></h1>
Complementary error function of x.
<a href="src/erfc.c.html">src</a>
<p>
<h1><tt><a name="eval">eval(<i>f,x,a</i>)</a></tt></h1>
Returns f evaluated at x=a.
<a href="src/eval.c.html#eval_eval">src</a>
<p>
<h1><tt><a name="exp">exp(<i>x</i>)</a></tt></h1>
Returns the exponential of x.
<a href="src/eval.c.html#eval_exp">src</a>
<p>
<h1><tt><a name="expand">expand(<i>r,x</i>)</a></tt></h1>
Returns the partial fraction expansion of the ratio of polynomials r in x.
<a href="src/expand.c.html">src</a>
<p>
<h1><tt><a name="expcos">expcos(<i>x</i>)</a></tt></h1>
Returns the exponential cosine of x.
<a href="src/expcos.c.html">src</a>
<p>
<h1><tt><a name="expsin">expsin(<i>x</i>)</a></tt></h1>
Returns the exponential sine of x.
<a href="src/expsin.c.html">src</a>
<p>
<h1><tt><a name="factor">factor(<i>n</i>)</a></tt></h1>
Factors integer n.
<a href="src/factor.c.html">src</a>
<p>
<h1><tt>factor(<i>p,x</i>)</tt></h1>
Factors polynomial p of x.
The x can be omitted for polynomials in x.
The polynomial should be factorable over integers.
The argument list can be extended for multivariate polynomials.
For example, factor(p,x,y) factors p over x and then over y.
<a href="src/factorpoly.c.html">src</a>
<p>
<h1><tt><a name="factorial">factorial(<i>x</i>)</a></tt></h1>
Can be entered as x!
<a href="src/factorial.c.html">src</a>
<p>
<h1><tt><a name="filter">filter(<i>f,a,b,...</i>)</a></tt></h1>
Returns f excluding any terms containing a, b, etc.
<a href="src/filter.c.html">src</a>
<p>
<h1><tt><a name="float">float(<i>x</i>)</a></tt></h1>
Converts rational numbers and integers to floating point values.
The symbol pi is also converted.
<a href="src/float.c.html">src</a>
<p>
<h1><tt><a name="floor">floor(<i>x</i>)</a></tt></h1>
Returns the largest integer not greater than x.
<a href="src/floor.c.html">src</a>
<p>
<h1><tt><a name="for">for(<i>i,j,k,a,b,...</i>)</a></tt></h1>
For i equals j through k evaluate a, b, etc.
<a href="src/for.c.html">src</a>
<p>
<h1><tt><a name="gcd">gcd(<i>a,b,...</i>)</a></tt></h1>
Returns the greatest common divisor.
<a href="src/gcd.c.html">src</a>
<p>
<h1><tt><a name="hermite">hermite(<i>x,n</i>)</a></tt></h1>
Returns the nth Hermite polynomial in x.
<a href="src/hermite.c.html">src</a>
<p>
<h1><tt><a name="hilbert">hilbert(<i>n</i>)</a></tt></h1>
Returns an n by n Hilbert matrix.
<a href="src/hilbert.c.html">src</a>
<p>
<h1><tt><a name="imag">imag(<i>z</i>)</a></tt></h1>
Returns the imaginary part of complex z.
<a href="src/imag.c.html">src</a>
<p>
<h1><tt><a name="inner">inner(<i>a,b,...</i>)</a></tt></h1>
Returns the inner product of tensors.
Same as the dot product.
<a href="src/inner.c.html">src</a>
<p>
<h1><tt><a name="integral">integral(<i>f,x</i>)</a></tt></h1>
Returns the integral of f with respect to x.
<a href="src/integral.c.html">src</a>
<p>
<h1><tt><a name="inv">inv(<i>m</i>)</a></tt></h1>
Returns the inverse of matrix m.
<a href="src/inv.c.html">src</a>
<p>
<h1><tt><a name="isprime">isprime(<i>n</i>)</a></tt></h1>
Returns 1 if n is a prime number, returns zero otherwise.
<a href="src/isprime.c.html">src</a>
<p>
<h1><tt><a name="laguerre">laguerre(<i>x,n,a</i>)</a></tt></h1>
Returns the nth Laguerre polynomial in x.
If "a" is omitted then a=0 is used.
<a href="src/laguerre.c.html">src</a>
<p>
<h1><tt><a name="lcm">lcm(<i>a,b,...</i>)</a></tt></h1>
Returns the least common multiple.
<a href="src/lcm.c.html">src</a>
<p>
<h1><tt><a name="leading">leading(<i>p,x</i>)</a></tt></h1>
Returns the leading coefficient of polynomial p in x.
<a href="src/leading.c.html">src</a>
<p>
<h1><tt><a name="legendre">legendre(<i>x,n,m</i>)</a></tt></h1>
Returns the nth Legendre polynomial in x.
If m is omitted then m=0 is used.
<a href="src/legendre.c.html">src</a>
<p>
<h1><tt><a name="log">log(<i>x</i>)</a></tt></h1>
Returns the natural logarithm of x.
<a href="src/log.c.html">src</a>
<p>
<h1><tt><a name="mag">mag(<i>z</i>)</a></tt></h1>
Returns the magnitude of complex z.
<a href="src/mag.c.html">src</a>
<p>
<h1><tt><a name="mod">mod(<i>a,b</i>)</a></tt></h1>
Returns the remainder of the result of "a" divided by b.
<a href="src/mod.c.html">src</a>
<p>
<h1><tt><a name="not">not(<i>x</i>)</a></tt></h1>
Returns the logical negation of x.
<a href="src/test.c.html#eval_not">src</a>
<p>
<h1><tt><a name="nroots">nroots(<i>p,x</i>)</a></tt></h1>
Returns all of the roots, both real and complex,
of polynomial p in x.
The roots are computed numerically.
The coefficients of p can be real or complex.
<a href="src/nroots.c.html">src</a>
<p>
<h1><tt><a name="numerator">numerator(<i>x</i>)</a></tt></h1>
Returns the numerator of expression x.
<a href="src/numerator.c.html">src</a>
<p>
<h1><tt><a name="or">or(<i>a,b,...</i>)</a></tt></h1>
Logical-or of predicate expressions.
<a href="src/test.c.html#eval_or">src</a>
<p>
<h1><tt><a name="outer">outer(<i>a,b,...</i>)</a></tt></h1>
Returns the outer product of tensors.
Also known as the tensor product.
<a href="src/outer.c.html">src</a>
<p>
<h1><tt><a name="polar">polar(<i>z</i>)</a></tt></h1>
Returns complex z in polar form.
<a href="src/polar.c.html">src</a>
<p>
<h1><tt><a name="prime">prime(<i>n</i>)</a></tt></h1>
Returns the nth prime number.
The domain of n is 1 to 10000.
<a href="src/prime.c.html">src</a>
<p>
<h1><tt><a name="print">print(<i>a,b,...</i>)</a></tt></h1>
Evaluate expressions and print the results.
Useful for printing from inside a "for" loop.
<a href="src/eval.c.html#eval_print">src</a>
<p>
<h1><tt><a name="product">product(<i>i,j,k,f</i>)</a></tt></h1>
For i equals j through k evaluate f.
Returns the product of all f.
<a href="src/product.c.html">src</a>
<p>
<h1><tt><a name="quote">quote(<i>x</i>)</a></tt></h1>
Returns expression x without evaluating it first.
<a href="src/eval.c.html#eval_quote">src</a>
<p><h1><tt><a name="quotient">quotient(<i>p,q,x</i>)</a></tt></h1>
Returns the quotient of polynomial p(x) over q(x).
The last argument can be omitted for polynomials in x.
The remainder can be calculated by p-q*quotient(p,q).
<a href="src/quotient.c.html">src</a>
<p>
<h1><tt><a name="rank">rank(<i>a</i>)</a></tt></h1>
Returns the number of indices that tensor "a" has.
<a href="src/eval.c.html#eval_rank">src</a>
<p>
<h1><tt><a name="rationalize">rationalize(<i>x</i>)</a></tt></h1>
Returns x with everything over a common denominator.
<a href="src/rationalize.c.html">src</a>
<p>
<h1><tt><a name="real">real(<i>z</i>)</a></tt></h1>
Returns the real part of complex z.
<a href="src/real.c.html">src</a>
<p>
<h1><tt><a name="rect">rect(<i>z</i>)</a></tt></h1>
Returns complex z in rectangular form.
<a href="src/rect.c.html">src</a>
<p>
<h1><tt><a name="roots">roots(<i>p,x</i>)</a></tt></h1>
Returns the values of x such that p(x)=0.
The polynomial p should be factorable over integers.
Returns a vector for multiple roots.
<a href="src/roots.c.html">src</a>
<p>
<h1><tt><a name="simplify">simplify(<i>x</i>)</a></tt></h1>
Returns x in a simpler form.
<a href="src/simplify.c.html">src</a>
<p>
<h1><tt><a name="sin">sin(<i>x</i>)</a></tt></h1>
Returns the sine of x.
<a href="src/sin.c.html">src</a>
<p>
<h1><tt><a name="sinh">sinh(<i>x</i>)</a></tt></h1>
Returns the hyperbolic sine of x.
<a href="src/sinh.c.html">src</a>
<p>
<h1><tt><a name="sqrt">sqrt(<i>x</i>)</a></tt></h1>
Returns the square root of x.
<a href="src/eval.c.html#eval_sqrt">src</a>
<p>
<h1><tt><a name="stop">stop()</a></tt></h1>
In a script, it does what it says.
<a href="src/eval.c.html#eval_stop">src</a>
<p>
<h1><tt><a name="subst">subst(<i>a,b,c</i>)</a></tt></h1>
Substitutes "a" for b in c and returns the result.
<a href="src/subst.c.html">src</a>
<p>
<h1><tt><a name="sum">sum(<i>i,j,k,f</i>)</a></tt></h1>
For i equals j through k evaluate f.
Returns the sum of all f.
<a href="src/sum.c.html">src</a>
<p>
<h1><tt><a name="tan">tan(<i>x</i>)</a></tt></h1>
Returns the tangent of <i>x</i>.
<a href="src/tan.c.html">src</a>
<p>
<h1><tt><a name="tanh">tanh(<i>x</i>)</a></tt></h1>
Returns the hyperbolic tangent of <i>x</i>.
<a href="src/tanh.c.html">src</a>
<p>
<h1><tt><a name="taylor">taylor(<i>f,x,n,a</i>)</a></tt></h1>
Returns the Taylor expansion of f(x) around x=a.
If "a" is omitted then a=0 is used.
The argument n is the degree of the expansion.
<a href="src/taylor.c.html">src</a>
<p><h1><tt><a name="test">test(<i>a,b,c,d,...</i>)</a></tt></h1>
If "a" is true then b is returned
else if c is true then d is returned, etc.
If the number of arguments is odd then the last argument is returned
when all else fails.
<a href="src/test.c.html">src</a>
<p>
<h1><tt><a name="transpose">transpose(<i>a,i,j</i>)</a></tt></h1>
Returns the transpose of "a" with respect to indices i and j.
If i and j are omitted then 1 and 2 are used.
Hence a matrix can be transposed with a single argument.
<a href="src/transpose.c.html">src</a>
<p>
<h1><tt><a name="unit">unit(<i>n</i>)</a></tt></h1>
Returns an n by n identity matrix.
<a href="src/eval.c.html#eval_unit">src</a>
<p>
<h1><tt><a name="zero">zero(<i>i,j,...</i>)</a></tt></h1>
Returns a null tensor with dimensions i, j, etc.
Useful for creating a tensor and then setting the component values.
<a href="src/zero.c.html">src</a>
</tt>
</body>
</html>