We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi @zhreshold , this tabel is my experience of testing speed in your repo , Hardware specification: 1.CPU : i7-7700 2.GPU : 1080ti 3.Mem : 32G
My code for testing :
import os import cv2 import numpy as np import sys import mxnet as mx import importlib from timeit import default_timer as timer from detect.detector import Detector CLASSES = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') img = './data/demo/dog.jpg' net = 'darknet19_yolo' sys.path.append(os.path.join(os.getcwd(), 'symbol')) net = importlib.import_module("symbol_" + net) \ .get_symbol(len(CLASSES), nms_thresh = 0.5, force_nms = True) prefix = os.path.join(os.getcwd(), 'model', 'yolo2_darknet19_416') epoch = 0 data_shape = 608 mean_pixels = (123,117,104) ctx = mx.gpu(0) batch = 3 detector = Detector(net, prefix, epoch, data_shape, mean_pixels, ctx=ctx,batch_size = batch) ims = [cv2.resize(cv2.imread(img),(data_shape,data_shape)) for i in range(batch)] def get_batch(imgs): img_len = len(imgs) l = [] for i in range(batch): if i < img_len: img = np.swapaxes(imgs[i], 0, 2) img = np.swapaxes(img, 1, 2) img = img[np.newaxis, :] l.append(img[0]) else: l.append(np.zeros(shape=(3, data_shape, data_shape))) l = np.array(l) return [mx.nd.array(l)] data = get_batch(ims) start = timer() for i in range(200): det_batch = mx.io.DataBatch(data,[]) detector.mod.forward(det_batch, is_train=False) detections = detector.mod.get_outputs()[0].asnumpy() result = [] for i in range(detections.shape[0]): det = detections[i, :, :] res = det[np.where(det[:, 0] >= 0)[0]] result.append(res) time_elapsed = timer() - start print("Detection time for {} images: {:.4f} sec , fps : {:.4f}".format(batch*200, time_elapsed , (batch*200/time_elapsed)))
Hope this experiment helpful to you.
The text was updated successfully, but these errors were encountered:
awesome, nice work.
Sorry, something went wrong.
No branches or pull requests
Hi @zhreshold , this tabel is my experience of testing speed in your repo ,
Hardware specification:
1.CPU : i7-7700
2.GPU : 1080ti
3.Mem : 32G
My code for testing :
Hope this experiment helpful to you.
The text was updated successfully, but these errors were encountered: