Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Benchmark of Batch Forward #13

Open
liumusicforever opened this issue Sep 9, 2017 · 1 comment
Open

Benchmark of Batch Forward #13

liumusicforever opened this issue Sep 9, 2017 · 1 comment

Comments

@liumusicforever
Copy link
Contributor

Hi @zhreshold , this tabel is my experience of testing speed in your repo ,
Hardware specification:
1.CPU : i7-7700
2.GPU : 1080ti
3.Mem : 32G

image

My code for testing :

import os
import cv2
import numpy as np
import sys 
import mxnet as mx
import importlib
from timeit import default_timer as timer
from detect.detector import Detector


CLASSES = ('aeroplane', 'bicycle', 'bird', 'boat',
           'bottle', 'bus', 'car', 'cat', 'chair',
           'cow', 'diningtable', 'dog', 'horse',
           'motorbike', 'person', 'pottedplant',
           'sheep', 'sofa', 'train', 'tvmonitor')

img = './data/demo/dog.jpg'
net = 'darknet19_yolo'
sys.path.append(os.path.join(os.getcwd(), 'symbol'))
net = importlib.import_module("symbol_" + net) \
            .get_symbol(len(CLASSES), nms_thresh = 0.5, force_nms = True)
prefix = os.path.join(os.getcwd(), 'model', 'yolo2_darknet19_416')
epoch = 0
data_shape = 608
mean_pixels = (123,117,104)
ctx = mx.gpu(0)
batch = 3



detector = Detector(net, prefix, epoch, data_shape, mean_pixels, ctx=ctx,batch_size = batch)

ims = [cv2.resize(cv2.imread(img),(data_shape,data_shape)) for i in range(batch)]

def get_batch(imgs):
    img_len = len(imgs)
    l = []
    for i in range(batch):
        if i < img_len:
            img = np.swapaxes(imgs[i], 0, 2)
            img = np.swapaxes(img, 1, 2) 
            img = img[np.newaxis, :] 
            l.append(img[0])
        else:
            l.append(np.zeros(shape=(3, data_shape, data_shape)))
    l = np.array(l)
    return [mx.nd.array(l)]


data  = get_batch(ims)


start = timer()

for i in range(200):
    det_batch = mx.io.DataBatch(data,[])
    detector.mod.forward(det_batch, is_train=False)
    detections = detector.mod.get_outputs()[0].asnumpy()
    result = []
    for i in range(detections.shape[0]):
        det = detections[i, :, :]
        res = det[np.where(det[:, 0] >= 0)[0]]
        result.append(res)


time_elapsed = timer() - start
print("Detection time for {} images: {:.4f} sec , fps : {:.4f}".format(batch*200, time_elapsed , (batch*200/time_elapsed)))

Hope this experiment helpful to you.

@zhreshold
Copy link
Owner

awesome, nice work.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants