-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathapp.py
38 lines (32 loc) · 1.07 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from flask import *
from sklearn.externals import joblib
import json
import os
import pandas as pd
from pandas.io.json import json_normalize
import numpy as np
app = Flask(__name__)
@app.route('/')
def hello_world():
return render_template("index.html")
@app.route('/predict',methods=["post"])
def predict():
formvalues = request.form
path1 = "/static/json/"
with open(os.path.join(os.getcwd()+"/"+path1,'file.json'), 'w') as f:
json.dump(formvalues, f)
with open(os.path.join(os.getcwd()+"/"+path1,'file.json'), 'r') as f:
values = json.load(f)
df = pd.DataFrame(json_normalize(values))
model_path=os.getcwd()+"/static/model/diabetes.pkl"
model = joblib.load(model_path)
result = model.predict(df)
a=np.array(1)
if result.astype('int')==a.astype('int'):
msg="Success"
else:
msg = "Unsuccess"
positive_percent= model.predict_proba(df)[0][1]*100
return render_template("index.html",msg=msg,prob=positive_percent,**request.args)
if __name__ == '__main__':
app.run()