-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImageDetect.cpp
514 lines (453 loc) · 14.2 KB
/
ImageDetect.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
#include "ImageDetect.h"
//#include <cstdlib>
/********************************
下面从yolo代码移植过来的源代码内容
********************************/
bool Yolo::readModel(cv::dnn::Net &net, std::string &netPath, bool isCuda = false)
{
try
{
net = cv::dnn::readNet(netPath);
}
catch (const std::exception&) {
return false;
}
//cuda
if (isCuda)
{
net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA_FP16);
}
//cpu
else
{
net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
}
return true;
}
bool Yolo::Detect(cv::Mat &SrcImg, cv::dnn::Net &net, std::vector<Output> &output)
{
cv::Mat blob;
int col = SrcImg.cols;
int row = SrcImg.rows;
int maxLen = MAX(col, row);
cv::Mat netInputImg = SrcImg.clone();
if (maxLen > 1.2*col || maxLen > 1.2*row) {
cv::Mat resizeImg = cv::Mat::zeros(maxLen, maxLen, CV_8UC3);
SrcImg.copyTo(resizeImg(cv::Rect(0, 0, col, row)));
netInputImg = resizeImg;
}
cv::dnn::blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(104, 117, 123), true, false);
//如果在其他设置没有问题的情况下但是结果偏差很大,可以尝试下用下面两句语句
//blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(0, 0,0), true, false);
//blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(114, 114,114), true, false);
net.setInput(blob);
std::vector<cv::Mat> netOutputImg;
//vector<string> outputLayerName{"345","403", "461","output" };
//net.forward(netOutputImg, outputLayerName[3]); //获取output的输出
net.forward(netOutputImg, net.getUnconnectedOutLayersNames());
std::vector<int> classIds;//结果id数组
std::vector<float> confidences;//结果每个id对应置信度数组
std::vector<cv::Rect> boxes;//每个id矩形框
float ratio_h = (float)netInputImg.rows / netHeight;
float ratio_w = (float)netInputImg.cols / netWidth;
int net_width = className.size() + 5; //输出的网络宽度是类别数+5
float* pdata = (float*)netOutputImg[0].data;
for (int stride = 0; stride < 3; stride++) { //stride
int grid_x = (int)(netWidth / netStride[stride]);
int grid_y = (int)(netHeight / netStride[stride]);
for (int anchor = 0; anchor < 3; anchor++) { //anchors
const float anchor_w = netAnchors[stride][anchor * 2];
const float anchor_h = netAnchors[stride][anchor * 2 + 1];
for (int i = 0; i < grid_y; i++) {
for (int j = 0; j < grid_x; j++) {
float box_score = pdata[4]; //Sigmoid(pdata[4]);//获取每一行的box框中含有某个物体的概率
if (box_score > boxThreshold) {
cv::Mat scores(1, className.size(), CV_32FC1, pdata + 5);
cv::Point classIdPoint;
double max_class_socre;
minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
max_class_socre = (float)max_class_socre; //Sigmoid((float)max_class_socre);
if (max_class_socre > classThreshold) {
//rect [x,y,w,h]
float x = pdata[0];// (Sigmoid(pdata[0]) * 2.f - 0.5f + j) * netStride[stride]; //x
float y = pdata[1];// (Sigmoid(pdata[1]) * 2.f - 0.5f + i) * netStride[stride]; //y
float w = pdata[2];// powf(Sigmoid(pdata[2]) * 2.f, 2.f) * anchor_w; //w
float h = pdata[3];// powf(Sigmoid(pdata[3]) * 2.f, 2.f) * anchor_h; //h
int left = (x - 0.5*w)*ratio_w;
int top = (y - 0.5*h)*ratio_h;
classIds.push_back(classIdPoint.x);
confidences.push_back(max_class_socre*box_score);
boxes.push_back(cv::Rect(left, top, int(w*ratio_w), int(h*ratio_h)));
}
}
pdata += net_width;//下一行
}
}
}
}
//执行非最大抑制以消除具有较低置信度的冗余重叠框(NMS)
std::vector<int> nms_result;
cv::dnn::NMSBoxes(boxes, confidences, classThreshold, nmsThreshold, nms_result);
for (int i = 0; i < nms_result.size(); i++)
{
int idx = nms_result[i];
Output result;
result.id = classIds[idx];
result.confidence = confidences[idx];
result.box = boxes[idx];
output.push_back(result);
}
if (output.size())
return true;
else
return false;
}
void Yolo::drawPred(cv::Mat &img, std::vector<Output> result, std::vector<cv::Scalar> color, std::vector<double> &stds)
{
for (int i = 0; i < result.size(); i++) {
int left, top;
left = result[i].box.x;
top = result[i].box.y;
int color_num = i;
rectangle(img, result[i].box, color[result[i].id], 2, 8);
double std1 = 0.0;
std::cout << result[i].box << std::endl;
std::string label = className[result[i].id] + ":" + std::to_string(result[i].confidence);
if (result[i].id == 2 || result[i].id == 3)//凹坑或突刺 进行标准差计算
{
cv::Mat ROI = img(result[i].box);
cv::imshow("12", ROI);
//imwrite("out.bmp", img);
cv::waitKey();
//将ROI传入标准差计算 给出标准差
cv::Mat gauss_img;
GaussianBlur(img, gauss_img, cv::Size(5, 5), 5, 0);
cv::Mat scharr_img;
Scharr(gauss_img, scharr_img, CV_64F, 0, 1);
imshow("123", scharr_img);
//imwrite("out.bmp", img);
cv::waitKey();
cv::Mat edeg_img;
convertScaleAbs(scharr_img, edeg_img);
cv::Mat edge_gray;
cvtColor(edeg_img, edge_gray, cv::COLOR_BGR2GRAY);
cv::Mat thresh_img;
cv::threshold(edge_gray, thresh_img, 129, 0, cv::THRESH_TOZERO);
//cv::imshow("1234", thresh_img);
//imwrite("out.bmp", img);
cv::waitKey();
std::vector<int>row_coordinates;
std::vector<int>col_coordinates;
for (size_t i = 0; i < thresh_img.cols; i++)
{
for (size_t j = 0; j < thresh_img.rows; j++)
{
if (thresh_img.at<uchar>(j, i) > 0)
{
row_coordinates.push_back(j);
col_coordinates.push_back(i);
cv::circle(img, cv::Point(i, j), 1, (255, 0, 0), -1);
break;
}
}
}
double sum = 0;
for (size_t i = 0; i < row_coordinates.size(); i++)
{
int m = row_coordinates[i];
int n = col_coordinates[i];
img.at<cv::Vec3b>(m, n)[0] = 0;
img.at<cv::Vec3b>(m, n)[1] = 0;
img.at<cv::Vec3b>(m, n)[2] = 255;
//求行坐标平均值
sum = row_coordinates[i] + sum;
}
double lengths = row_coordinates.size();
double row_avg = sum / lengths;
//std::cout << row_avg << std::endl;
double variance = 0;
for (size_t i = 0; i < row_coordinates.size(); i++)
{
//先求处方差
double m = row_coordinates[i];
variance = variance + (m - row_avg)*(m - row_avg);
}
//标准差
std1 = sqrtf(variance / lengths);
stds.push_back(std1);
}
int baseLine;
cv::Size labelSize = cv::getTextSize(label, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = std::max(top, labelSize.height);
//rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
putText(img, label + " " + std::to_string(std1), cv::Point(left, top), cv::FONT_HERSHEY_SIMPLEX, 1, color[result[i].id], 2);
}
//cv::imshow("1", img);
//imwrite("out.bmp", img);
//cv::waitKey();
//destroyAllWindows();
}
/********************************
下面封装类源代码内容,主要调用该类
********************************/
bool ImageDetect::GetImage(cv::Mat Image)
{
if (Image.empty())
{
return false;
}
else
{
ImageDetect::Image = Image.clone();//深拷贝输入图像到类中,与源图像独立
HaveImage = true;
return true;
}
}
bool ImageDetect::GetImage(std::string ImagePath)
{
cv::Mat srcImage = cv::imread(ImagePath);
if (Image.empty())
{
return false;
}
else
{
Image = srcImage.clone();
HaveImage = true;
return true;
}
}
std::string ImageDetect::findModel()
{
return model;
}
bool ImageDetect::YoloInit(std::string modelpath)
{
bool flag = yolo->readModel(net, modelpath, false);
model = modelpath;
if (flag == false)
{
model = "NoAny";
return flag;
}
else
{
srand(time(0));
for (int i = 0; i < 80; i++)
{
int b = rand() % 256;
int g = rand() % 256;
int r = rand() % 256;
color.push_back(cv::Scalar(b, g, r));
}
return flag;
}
}
bool ImageDetect::YoloDetect(yoloresult &yoloresult)
{
bool flag= yolo->Detect(Image, net, yoloresult.result);
if (flag == false)
{
return flag;
}
else
{
yoloresult.className = yolo->className;
yolo->drawPred(Image, yoloresult.result, color, yoloresult.stds);
yoloresult.flag = true;
return flag;
}
}
bool ImageDetect::printyoloresult(const yoloresult yoloresult)
{
if (yoloresult.flag == false)
{
return false;
}
else
{
for (int i = 0; i < yoloresult.result.size(); i++)
{
std::cout << yoloresult.className[yoloresult.result[i].id] << std::endl;
}
return true;
}
}
/***************************************
Main3函数
****************************************/
cv::Mat patch(int i, int j, cv::Mat src)
{
cv::Mat patch_img(src, cv::Range(i - 50, i + 50), cv::Range(j - 50, j + 50));
//rectangle(src, Point(j - 50, i - 50), Point(j + 50, i + 50), Scalar(255), 1);
//imshow("patch", src);
//waitKey(1000);
return patch_img;
}
double AreaContrast(cv::Mat patchs)//只需要传入一张图像就ok
{
//将patch内的像素值全部存入容器Vpixel中
std::vector<int> Vpixel;
for (size_t ii = 0; ii < patchs.rows; ii++)
{
for (size_t jj = 0; jj < patchs.cols; jj++)
{
int value = patchs.at<uchar>(ii, jj);
Vpixel.push_back(value);
}
}
//对Vpixel中的像素值进行排序
std::sort(Vpixel.begin(), Vpixel.end());
//Vpiexl的索引是0---Vpixel.size()-1,故前500个为0-499,后500个为Vpixel.size()-501---Vpixel.size()-1
//定义两个容器存储前500个和后500个
std::vector<int>max_500, min_500;
int min_start = Vpixel.size() - 501;
for (size_t m = 0; m < 500; m++)
{
int minvalue = Vpixel[m];
int maxvalue = Vpixel[min_start + m];
max_500.push_back(maxvalue);
min_500.push_back(minvalue);
}
//最大值和最小值的求和
double max_sum = 0;
double min_sum = 0;
for (size_t n = 0; n < max_500.size(); n++)
{
max_sum = max_sum + max_500[n];
min_sum = min_sum + min_500[n];
}
double dif = (max_sum - min_sum) / 500;
Vpixel.clear();
max_500.clear();
min_500.clear();
return dif;
}
cv::Mat ImageDetect::residual()
{
cv::Mat img, edge_img;
std::vector<int> j_edge;
cv::cvtColor(Image, img, cv::COLOR_BGR2GRAY);
cv::GaussianBlur(img, img, cv::Size(3, 3), 5, 0);
cv::Canny(img, edge_img, 50, 100);
for (size_t i = 0; i < edge_img.rows; i++)
{
for (size_t j = 0; j < edge_img.cols; j++)
{
if (edge_img.at<uchar>(i, j) == 255)
{
j_edge.push_back(j);
break;
}
}
}
sort(j_edge.begin(), j_edge.end());//从小到大排序
int j_edge_length = j_edge.size();
int hang = 0;
for (size_t i = 50; i < 1851; i = i + 100)//i这个值不用改
{
std::vector<double> Vavg, Vstd;
int lie = 0;
for (size_t j = j_edge[0] - 50; j > 50; j = j - 100)//j这个值根据j_edge[0]进行修改,以j_edge[0]-50作为起始点
{
cv::Mat patch_image = patch(i, j, img);//取小patch操作,得到100*100的图像块
//进行判断,查看patch内是否存在黑色小颗粒残留
//判断依据:取patch内前500个最大值的和与最后500个最小值的和的差值,因黑色颗粒残留只存在于
//白色区域,因此每隔patch内的差值在一个大致范围呢,这个范围可以根据工装进行调节设置
double dif = AreaContrast(patch_image);
//cout << "第" << hang << "的第" << lie << "个patch的的差值:" << dif << endl;
lie++;
}
hang++;
}
}
cv::Mat ImageDetect::Confirm()
{
cv::Mat Input = Image.clone();
cv::Mat img, gauss_img,edge_img;
cv::cvtColor(Input, img, cv::COLOR_BGR2GRAY);
cv::GaussianBlur(img, gauss_img, cv::Size(5, 5), 5, 0);
cv::Canny(gauss_img, edge_img, 20,50,3,false);
std::vector<cv::Vec4i> lines1, lines2;
cv::HoughLinesP(edge_img, lines1, 1, CV_PI / 360, 30, 20, 5);
cv::HoughLinesP(edge_img, lines1, 1, CV_PI / 360, 30, 20, 10);
for (size_t i = 0; i < lines1.size(); i++)
{
double x1 = lines1[i][0];
double y1 = lines1[i][1];
double x2 = lines1[i][2];
double y2 = lines1[i][3];
double k = -(y2 - y1) / (x2 - x1);
double angles = atan(k)*57.29577;
//if (angles<20)
//{
// line(color_img, Point(x1, y1), Point(x2, y2), Scalar(0,0,255), 1);
// cout << angles << endl;
//}
if (abs(angles) < 80 && abs(angles) > 70)
{
cv::line(Input, cv::Point(x1, y1), cv::Point(x2, y2),cv::Scalar(0, 0, 255), 1);
std::string text;
text = std::to_string(angles);
cv::putText(Input, text, cv::Point(x1, y1), cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 255), 1);
}
else if (abs(angles) < -70 && abs(angles) > -80)
{
cv::line(Input, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(0, 0, 255), 1);
std::string text;
text = std::to_string(angles);
cv::putText(Input, text, cv::Point(x1, y1), cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 255), 1);
}
}
return Input;
}
double ImageDetect::roundness()
{
cv::Mat Input = Image.clone();
cv::Mat img, gauss_img, scharr_img, edeg_img, edge_gray, thresh_img;
cv::cvtColor(Input, img, cv::COLOR_BGR2GRAY);
cv::GaussianBlur(img, gauss_img, cv::Size(5, 5), 5, 0);
cv::Scharr(gauss_img, scharr_img, CV_64F, 0, 1);
cv::convertScaleAbs(scharr_img, edeg_img);
cv::cvtColor(edeg_img, edge_gray, cv::COLOR_BGR2GRAY);
cv::threshold(edge_gray, thresh_img, 129, 0, cv::THRESH_TOZERO);
std::vector<int>row_coordinates, col_coordinates;
for (size_t i = 0; i < thresh_img.cols; i++)
{
for (size_t j = 0; j < thresh_img.rows; j++)
{
if (thresh_img.at<uchar>(j, i)>0)
{
row_coordinates.push_back(j);
col_coordinates.push_back(i);
break;
}
}
}
double sum = 0;
for (size_t i = 0; i < row_coordinates.size(); i++)
{
int m = row_coordinates[i];
int n = col_coordinates[i];
Input.at<cv::Vec3b>(m, n)[0] = 0;
Input.at<cv::Vec3b>(m, n)[1] = 0;
Input.at<cv::Vec3b>(m, n)[2] = 255;
//求行坐标平均值
sum = row_coordinates[i] + sum;
}
double lengths = row_coordinates.size();
double row_avg = sum / lengths;
//cout << row_avg << endl;
double variance = 0;
for (size_t i = 0; i < row_coordinates.size(); i++)
{
//先求处方差
double m = row_coordinates[i];
variance = variance + (m - row_avg)*(m - row_avg);
}
//标准差
double std = sqrtf(variance / lengths);
return std;
}