-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4kyu-matrixDeterminant.js
66 lines (45 loc) · 1.66 KB
/
4kyu-matrixDeterminant.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
'use strict';
// Source: https://www.codewars.com/kata/52a382ee44408cea2500074c/
// DESCRIPTION:
// Write a function that accepts a square matrix (N x N 2D array) and returns
// the determinant of the matrix.
// How to take the determinant of a matrix -- it is simplest to start with the
// smallest cases:
// A 1x1 matrix |a| has determinant a.
// A 2x2 matrix [ [a, b], [c, d] ] or
// |a b|
// |c d|
// has determinant: a*d - b*c.
// The determinant of an n x n sized matrix is calculated by reducing the
// problem to the calculation of the determinants of n matrices of n-1 x n-1
// size.
// For the 3x3 case, [ [a, b, c], [d, e, f], [g, h, i] ] or
// |a b c|
// |d e f|
// |g h i|
// the determinant is: a * det(a_minor) - b * det(b_minor) + c * det(c_minor)
// where det(a_minor) refers to taking the determinant of the 2x2 matrix created
// by crossing out the row and column in which the element a occurs:
// |- - -|
// |- e f|
// |- h i|
// Note the alternation of signs.
// The determinant of larger matrices are calculated analogously, e.g. if M is a
// 4x4 matrix with first row [a, b, c, d], then:
// det(M) = a * det(a_minor) - b * det(b_minor) + c * det(c_minor) - d *
// det(d_minor)
function determinant(m) {
let size = m.length;
let result = 0;
let modifier = 1;
if (size === 0) return null;
if (size === 1) return m[0][0];
if (size === 2) return m[0][0] * m[1][1] - m[0][1] * m[1][0];
for (let i = 0; i < size; i++) {
result += modifier * m[0][i] * determinant(m.slice(1).map(a => {
return a.slice(0, i).concat(a.slice(i + 1))
}));
modifier *= -1;
}
return result;
}