-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
739 lines (590 loc) · 30.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import torch
import torch.nn as nn
import numpy as np
import math
from timm.models.vision_transformer import PatchEmbed, Attention, Mlp
from mamba_ssm.modules.mamba_simple import Mamba
from functools import partial
from einops import rearrange
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Mamba Block #
#################################################################################
class RMSNorm(torch.nn.Module):
"""Root Mean Square Layer Normalization.
Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License:
https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE.
"""
def __init__(self, size: int, dim: int = -1, eps: float = 1e-5) -> None:
super().__init__()
self.weight = torch.nn.Parameter(torch.ones(size))
self.eps = eps
self.dim = dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
dtype = x.dtype
x = x.float()
# NOTE: the original RMSNorm paper implementation is not equivalent
norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
x_normed = x * torch.rsqrt(norm_x + self.eps)
return (self.weight * x_normed).to(dtype=dtype)
def reset_parameters(self) -> None:
torch.nn.init.ones_(self.weight)
class ScaleNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.scale = dim ** -0.5
self.eps = eps
self.g = nn.Parameter(torch.ones(1))
def forward(self, x):
norm = torch.norm(x, dim = -1, keepdim = True) * self.scale
return x / norm.clamp(min = self.eps) * self.g
class LLaMAMLP(nn.Module):
def __init__(self, n_embd, intermediate_size, bias=True) -> None:
super().__init__()
self.fc_1 = nn.Linear(n_embd, intermediate_size, bias=bias)
self.fc_2 = nn.Linear(n_embd, intermediate_size, bias=bias)
self.proj = nn.Linear(intermediate_size, n_embd, bias=bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x_fc_1 = self.fc_1(x)
x_fc_2 = self.fc_2(x)
x = torch.nn.functional.silu(x_fc_1) * x_fc_2
return self.proj(x)
class HourGlass(nn.Module):
def __init__(self, hidden_size, intermediate_size, out_features, down_scale=True, up_scale=True):
super().__init__()
self.down_scale = down_scale
self.up_scale = up_scale
if down_scale:
self.down = nn.AvgPool1d(2, stride=2)
if up_scale:
self.up = nn.Upsample(scale_factor=2, mode='nearest')
# approx_gelu = lambda: nn.GELU(approximate="tanh")
# self.mlp = Mlp(in_features=hidden_size, hidden_features=intermediate_size, out_features=out_features, act_layer=approx_gelu, drop=0)
self.mlp = nn.Sequential(
nn.Linear(hidden_size, out_features, bias=True)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.down_scale:
x = rearrange(x, "b l d -> b d l")
x = self.down(x)
x = rearrange(x, "b d l -> b l d")
x = self.mlp(x)
if self.up_scale:
x = rearrange(x, "b l d -> b d l")
x = self.up(x)
x = rearrange(x, "b d l -> b l d")
return x
class MambaBlock(nn.Module):
def __init__(
self, hidden_size, layer_idx, bidirectional, moe_num_expert=8, moe_top_k=2, mlp_ratio=4.0, **block_kwargs
):
"""
Simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection"
This Block has a slightly different structure compared to a regular
prenorm Transformer block.
The standard block is: LN -> MHA/MLP -> Add.
[Ref: https://arxiv.org/abs/2002.04745]
Here we have: Add -> LN -> Mixer, returning both
the hidden_states (output of the mixer) and the residual.
This is purely for performance reasons, as we can fuse add and LayerNorm.
The residual needs to be provided (except for the very first block).
"""
super().__init__()
self.bidirectional = bidirectional
factory_kwargs = {"device": None, "dtype": None}
self.mixer1 = partial(Mamba, layer_idx=layer_idx * 2, **factory_kwargs)(hidden_size)
self.mixer2 = partial(Mamba, layer_idx=layer_idx * 2 + 1, **factory_kwargs)(hidden_size)
if self.bidirectional == "v1":
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.dense1 = HourGlass(hidden_size, mlp_hidden_dim, hidden_size, False, False) # True, True // down and up
self.dense2 = HourGlass(hidden_size * 2, mlp_hidden_dim, hidden_size * 2, False, False) # True, False // down
self.dense3 = HourGlass(hidden_size, mlp_hidden_dim, hidden_size * 2, False, False) # True, False // down
self.dense4 = HourGlass(hidden_size * 2, mlp_hidden_dim, hidden_size, False, False) # False, True // up
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 3 * hidden_size, bias=True)
)
elif self.bidirectional == "v2":
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
elif self.bidirectional == "v3":
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.experts = nn.ModuleList([Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
for _ in range(moe_num_expert)])
self.gate = NaiveGate(hidden_size, moe_num_expert, moe_top_k)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
else:
raise NotImplementedError("not implemented")
def forward(
self, x, c, inference_params=None
):
if self.bidirectional == "v1":
shift, scale, gate = self.adaLN_modulation(c).chunk(3, dim=1)
x_ = modulate(self.norm1(x), shift, scale)
x_ssm = self.dense1(x_)
x_f = self.mixer1(x_ssm, inference_params=inference_params)
x_b = self.mixer2(x_ssm.flip([1]), inference_params=inference_params)
x_fb = torch.cat([x_f, x_b.flip([1])], dim=-1)
x_fb = self.dense2(x_fb)
x_ = self.dense3(x_)
x_ = torch.nn.functional.silu(x_) * x_fb
x_o = self.dense4(x_)
x = x + gate.unsqueeze(1) * x_o
elif self.bidirectional == "v2":
shift_m, scale_m, gate_m, shift_o, scale_o, gate_o = self.adaLN_modulation(c).chunk(6, dim=1)
x = modulate(self.norm1(x), shift_m, scale_m)
x_f = self.mixer1(x, inference_params=inference_params)
x_b = self.mixer2(x.flip([1]), inference_params=inference_params)
x_fb = (x_f + x_b.flip([1])) * 0.5
x = x + gate_m.unsqueeze(1) * x_fb
x_o = self.mlp(modulate(self.norm2(x), shift_o, scale_o))
x = x + gate_o.unsqueeze(1) * x_o
elif self.bidirectional == "v3" :
shift_m, scale_m, gate_m, shift_o, scale_o, gate_o = self.adaLN_modulation(c).chunk(6, dim=1)
x = modulate(self.norm1(x), shift_m, scale_m)
x_f = self.mixer1(x, inference_params=inference_params)
x_b = self.mixer2(x.flip([1]), inference_params=inference_params)
x_fb = (x_f + x_b.flip([1])) * 0.5
x = x + gate_m.unsqueeze(1) * x_fb
norm_x = self.norm2(x)
norm_x_squashed = norm_x.view(-1, norm_x.shape[-1])
gate_top_k_idx, gate_top_k_score = self.gate(norm_x_squashed, return_all_scores=False) # N*SEQ, TOPK
x_norm = modulate(norm_x, shift_o, scale_o)
norm_x_squashed = x_norm.view(-1, norm_x.shape[-1])
results = torch.zeros_like(norm_x_squashed)
for i, expert in enumerate(self.experts):
batch_idx, nth_expert = torch.where(gate_top_k_idx == i)
score = gate_top_k_score[batch_idx, nth_expert][..., None]
pick = norm_x_squashed[batch_idx]
results[batch_idx] += expert(pick) * score
x = x + gate_o.unsqueeze(1) * results.view(x.shape)
else:
raise NotImplementedError("not implemented")
return x
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
#################################################################################
# MOE DiT Model #
#################################################################################
class DiTMoEBlock(nn.Module):
def __init__(self, hidden_size, num_heads, moe_num_expert=8, moe_top_k=2, mlp_ratio=4.0, **block_kwargs):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.experts = nn.ModuleList([Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
for _ in range(moe_num_expert)])
self.gate = NaiveGate(hidden_size, moe_num_expert, moe_top_k)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 4 * hidden_size, bias=True)
)
def forward(self, x, c) -> torch.Tensor:
shift_msa, scale_msa, gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(4, dim=1)
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
norm_x = self.norm2(x)
# norm_x = modulate(self.norm2(x), shift_mlp, scale_mlp)
norm_x_squashed = norm_x.view(-1, norm_x.shape[-1])
gate_top_k_idx, gate_top_k_score = self.gate(norm_x_squashed, return_all_scores=False) # N*SEQ, TOPK
results = torch.zeros_like(norm_x_squashed)
for i, expert in enumerate(self.experts):
batch_idx, nth_expert = torch.where(gate_top_k_idx == i)
score = gate_top_k_score[batch_idx, nth_expert][..., None]
pick = norm_x_squashed[batch_idx]
results[batch_idx] += expert(pick) * score
results = gate_mlp.unsqueeze(1) * results.view(x.shape)
return x + results
class NaiveGate(nn.Module):
def __init__(self, n_embd, moe_num_expert, moe_top_k):
super().__init__()
self.gate = nn.Linear(n_embd, moe_num_expert)
self.top_k = moe_top_k
def forward(self, inp, return_all_scores=False):
gate = self.gate(inp)
gate_top_k_val, gate_top_k_idx = torch.topk(
gate, k=self.top_k, dim=-1, largest=True, sorted=False
)
gate_top_k_score = nn.functional.softmax(gate_top_k_val, dim=1)
if return_all_scores:
gate_score = nn.functional.softmax(gate, dim=-1)
return gate_top_k_idx, gate_top_k_score, gate, gate_score
return gate_top_k_idx, gate_top_k_score
#################################################################################
# Core DiT Model #
#################################################################################
class DiTBlock(nn.Module):
"""
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
def forward(self, x, c):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
return x
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
num_classes=1000,
learn_sigma=True,
block_type="DiTBlock",
bidirectional=None,
moe_num_expert=8,
moe_top_k=2
):
super().__init__()
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.block_type = block_type
self.bidirectional = bidirectional
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
self.t_embedder = TimestepEmbedder(hidden_size)
self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob)
num_patches = self.x_embedder.num_patches
# Will use fixed sin-cos embedding:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False)
if self.block_type == "DiTBlock":
self.blocks = nn.ModuleList([
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth)
])
elif self.block_type == "DiTMoEBlock":
self.blocks = nn.ModuleList([
DiTMoEBlock(hidden_size, num_heads, moe_num_expert=moe_num_expert, moe_top_k=moe_top_k, mlp_ratio=mlp_ratio) for _ in range(depth)
])
else:
self.blocks = nn.ModuleList(
[
MambaBlock(
hidden_size=hidden_size,
layer_idx=i,
bidirectional=bidirectional,
)
for i in range(depth)
]
)
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize (and freeze) pos_embed by sin-cos embedding:
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
# Initialize label embedding table:
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
if self.block_type == "DiTBlock" or self.block_type == "DiTMoEBlock":
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
else:
for idx_block, block in enumerate(self.blocks):
if self.bidirectional == "v1":
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
elif self.bidirectional == "v2":
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def unpatchify(self, x):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = w = int(x.shape[1] ** 0.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
return imgs
def ckpt_wrapper(self, module):
def ckpt_forward(*inputs):
outputs = module(*inputs)
return outputs
return ckpt_forward
def forward(self, x, t, y):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
x = self.x_embedder(x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(t) # (N, D)
y = self.y_embedder(y, self.training) # (N, D)
c = t + y # (N, D)
for block in self.blocks:
x = block(x, c)
# for block in self.blocks:
# x = torch.utils.checkpoint.checkpoint(self.ckpt_wrapper(block), x, c) # (N, T, D)
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
def forward_with_cfg(self, x, t, y, cfg_scale):
"""
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(combined, t, y)
# For exact reproducibility reasons, we apply classifier-free guidance on only
# three channels by default. The standard approach to cfg applies it to all channels.
# This can be done by uncommenting the following line and commenting-out the line following that.
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
#################################################################################
# Sine/Cosine Positional Embedding Functions #
#################################################################################
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
#################################################################################
# DiT Configs #
#################################################################################
# ================================ MOE ============================================
def DiT_XL_MOE_2(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, moe_num_expert=8, mlp_ratio=4.0, block_type="DiTMoEBlock", **kwargs)
def DiT_B_MOE_4(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, moe_num_expert=8, mlp_ratio=4.0, block_type="DiTMoEBlock", **kwargs)
# =============================== MAMBA ===========================================
def DiT_XL_BIMBv1_2(**kwargs):
return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, block_type="MambaBlock", bidirectional="v1", **kwargs)
def DiT_L_BIMBv1_2(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, block_type="MambaBlock", bidirectional="v1", **kwargs)
def DiT_B_BIMBv1_4(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, block_type="MambaBlock", bidirectional="v1", **kwargs)
def DiT_XL_BIMBv2_2(**kwargs):
return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, block_type="MambaBlock", bidirectional="v2", **kwargs)
def DiT_L_BIMBv2_2(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, block_type="MambaBlock", bidirectional="v2", **kwargs)
def DiT_B_BIMBv2_4(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, block_type="MambaBlock", bidirectional="v2", **kwargs)
def DiT_B_BIMBv3_4(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, block_type="MambaBlock", bidirectional="v2", **kwargs)
# ================================= ORIGIN ===========================================
def DiT_XL_2(**kwargs):
return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)
def DiT_XL_4(**kwargs):
return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)
def DiT_XL_8(**kwargs):
return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs)
def DiT_L_2(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs)
def DiT_L_4(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs)
def DiT_L_8(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs)
def DiT_B_2(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs)
def DiT_B_4(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)
def DiT_B_8(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)
def DiT_S_2(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)
def DiT_S_4(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)
def DiT_S_8(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)
DiT_models = {
'DiT-B-BIMBv3/4': DiT_B_BIMBv3_4,
'DiT-XL-MOE/2': DiT_XL_MOE_2, 'DiT-B-MOE/4': DiT_B_MOE_4,
'DiT-XL-BIMBv2/2': DiT_XL_BIMBv2_2, 'DiT-XL-BIMBv1/2': DiT_XL_BIMBv1_2,
'DiT-B-BIMBv2/4': DiT_B_BIMBv2_4, 'DiT-B-BIMBv1/4': DiT_B_BIMBv1_4,
'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/8': DiT_XL_8,
'DiT-L/2': DiT_L_2, 'DiT-L/4': DiT_L_4, 'DiT-L/8': DiT_L_8,
'DiT-B/2': DiT_B_2, 'DiT-B/4': DiT_B_4, 'DiT-B/8': DiT_B_8,
'DiT-S/2': DiT_S_2, 'DiT-S/4': DiT_S_4, 'DiT-S/8': DiT_S_8,
}