-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
423 lines (355 loc) · 15.8 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
from __future__ import print_function
import argparse
import os
import time
import math
import glob
from pathlib import Path
import sys
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from typing import Any, Dict
from typing import Optional, Tuple, Union
import lightning as L
from lightning.pytorch.strategies import DeepSpeedStrategy, FSDPStrategy
from functools import partial
from lightning.pytorch.callbacks import ModelCheckpoint
from torch.utils.data import DataLoader
from torchmetrics.aggregation import RunningMean
from typing_extensions import Literal
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from lightning.pytorch.loggers import CSVLogger
# from litgpt import Tokenizer
from litgpt.tokenizer_v2 import TTokenizer
from litgpt.args import EvalArgs, TrainArgs
from litgpt.config import name_to_config
from litgpt.data import DataModule, TinyLlama
from litgpt.model_v2 import GPT, Block, CausalSelfAttention, Config, LLaMAMLP
from litgpt.utils import (
CLI,
CycleIterator,
capture_hparams,
chunked_cross_entropy,
copy_config_files,
get_default_supported_precision,
init_out_dir,
num_parameters,
parse_devices,
reset_parameters,
save_config,
save_hyperparameters,
)
from deepspeed.ops.adam import FusedAdam, DeepSpeedCPUAdam
import deepspeed
MASTER_PORT = os.environ.get('MASTER_PORT', 29500)
MASTER_ADDR = os.environ.get('MASTER_ADDR', "localhost")
WORLD_SIZE = int(os.environ.get('WORLD_SIZE', 1))
RANK = os.environ.get('RANK', 0)
INT_RANK = int(RANK)
LOCAL_RANK = os.environ.get('LOCAL_RANK', 0)
INT_LOCAL_RANK = int(LOCAL_RANK)
print(
"MASTER_ADDR:{}, MASTER_PORT:{}, WORLD_SIZE:{}, RANK:{}, LOCAL_RANK:{}".format(MASTER_ADDR, MASTER_PORT, WORLD_SIZE,
RANK, LOCAL_RANK))
class ParallelConfig:
def __init__(self,
optimizer = "AdamW",
cpu_checkpoint = False,
strategy_name = "deepspeed_2"):
self.optimizer = optimizer
self.cpu_checkpoint = cpu_checkpoint
self.strategy_name = strategy_name
# training
# TODO
# FusedAdam AdamW DeepSpeedCPUAdam
# deepspeed_3 deepspeed_2 fsdp
# deepspeed_3: DeepSpeedCPUAdam cpu_checkpoint True batch_size 16
# fsdp: AdamW cpu_checkpoint False
# optimizer = "AdamW"
# cpu_checkpoint = False
# strategy_name = "fsdp"
# optimizer = "DeepSpeedCPUAdam"
# cpu_checkpoint = True
# strategy_name = "deepspeed_2"
# optimizer = "AdamW"
# cpu_checkpoint = False
# strategy_name = "deepspeed_2"
# optimizer = "DeepSpeedCPUAdam"
# cpu_checkpoint = True
# strategy_name = "deepspeed_3"
class LightningGPTModule(L.LightningModule):
def __init__(self,
config: Config,
train_args: TrainArgs,
eval_args: EvalArgs,
parallel_config,
warmup_iters,
max_iters,
gradient_accumulation_iters) -> None:
super().__init__()
self.warmup_iters = warmup_iters
self.max_iters = max_iters
self.train_args = train_args
self.eval_args = eval_args
self.model_config = config
self.parallel_config = parallel_config
self.module: Optional[torch.nn.Module] = None
self.flops_per_batch: Optional[int] = None
self.running_loss = RunningMean(window=gradient_accumulation_iters, sync_on_compute=False)
self.val_losses = []
def configure_model(self) -> None:
self.module = GPT(self.model_config)
if self.model_config.rnn_type is None:
self.module.apply(partial(initialize_weights, n_layer=self.model_config.n_layer, n_embd=self.model_config.n_embd))
if self.train_args.tie_embeddings:
self.module.transformer.wte.weight = self.module.lm_head.weight
if self.train_args.max_seq_length:
self.module.max_seq_length = self.train_args.max_seq_length
def configure_optimizers(self) -> torch.optim.Optimizer:
if self.parallel_config.optimizer == "AdamW":
return torch.optim.AdamW(self.module.parameters(),
lr=self.train_args.learning_rate,
weight_decay=self.train_args.weight_decay,
betas=(self.train_args.beta1, self.train_args.beta2),
)
elif self.parallel_config.optimizer == "FusedAdam":
return FusedAdam(self.module.parameters(),
lr=self.train_args.learning_rate,
weight_decay=self.train.weight_decay,
betas=(self.train_args.beta1, self.train_args.beta2),
)
else:
return DeepSpeedCPUAdam(self.module.parameters(),
lr=self.train_args.learning_rate,
weight_decay=self.train_args.weight_decay,
betas=(self.train_args.beta1, self.train_args.beta2),
)
def on_fit_start(self) -> None:
trainer = self.trainer
def on_train_batch_start(self, batch: Any, batch_idx: int) -> None:
# determine and set the learning rate for this iteration
lr = get_lr(learning_rate=self.train_args.learning_rate,
it=self.trainer.fit_loop.total_batch_idx,
warmup_iters=self.warmup_iters,
max_iters=self.max_iters,
min_lr=self.train_args.min_lr)
for optimizer in self.trainer.strategy.optimizers:
for param_group in optimizer.param_groups:
param_group["lr"] = lr
self.log("lr", lr, on_step=True, on_epoch=False, prog_bar=False)
def forward(self, idx):
return self.module(idx)
def training_step(self, batch: Any, batch_idx: int) -> torch.Tensor:
time1 = time.perf_counter()
input_ids = batch[:, 0 : self.module.max_seq_length].contiguous().long()
targets = batch[:, 1 : (self.module.max_seq_length + 1)].contiguous().long()
logits = self(input_ids)
loss = chunked_cross_entropy(logits, targets)
self.running_loss.update(loss.detach())
time2 = time.perf_counter()
self.log("train_loss", self.running_loss.compute().item(), on_step=True, on_epoch=False, prog_bar=True)
self.log("iter_time", time2 - time1, on_step=True, on_epoch=False, prog_bar=True)
self.log("batch_idx", batch_idx, on_step=True, on_epoch=False, prog_bar=True)
return loss
def validation_step(self, batch: Any, batch_idx: int) -> None:
if batch_idx == 0:
self.val_losses = []
if batch_idx >= self.eval_args.max_iters:
return
input_ids = batch[:, 0 : self.module.max_seq_length].contiguous().long()
targets = batch[:, 1 : (self.module.max_seq_length + 1)].contiguous().long()
logits = self(input_ids)
loss = chunked_cross_entropy(logits, targets)
self.val_losses.append(loss)
val_loss = torch.stack(self.val_losses).mean()
val_loss = val_loss.item()
self.log("val_loss", val_loss, on_step=True, on_epoch=False, prog_bar=True)
self.log("val_ppl", math.exp(val_loss), on_step=True, on_epoch=False, prog_bar=True)
def setup(
num_nodes: int = 1,
model_name: Optional[str] = None,
model_config: Optional[Config] = None,
out_dir: Path = Path("out/pretrain"),
precision: Literal["bf16-true", "bf16-mixed", "32-true", None] = None,
initial_checkpoint_dir: Optional[Path] = None,
resume: Union[bool, Path] = False,
data: Optional[DataModule] = None,
train: TrainArgs = TrainArgs(
save_interval=1000,
log_interval=1,
global_batch_size=512,
micro_batch_size=4,
max_tokens=int(3e12), # 3 trillion
learning_rate=4e-4,
weight_decay=1e-1,
beta1=0.9,
beta2=0.95,
max_norm=1.0,
min_lr=4e-5,
lr_warmup_steps=2000,
tie_embeddings=False,
),
eval: EvalArgs = EvalArgs(interval=1000, max_iters=100),
devices: Union[int, str] = "auto",
tokenizer_dir: Optional[Path] = None,
logger_name: Literal["wandb", "tensorboard", "csv"] = "csv",
seed: int = 42,
parallel_config=ParallelConfig(),
):
hparams = capture_hparams()
data = TinyLlama() if data is None else data
if model_config is not None and model_name is not None:
raise ValueError("Only one of `model_name` or `model_config` can be set.")
elif model_config is None and model_name is None:
available_models = "\n".join(sorted(name_to_config))
raise ValueError(f"Please specify --model_name <model_name>. Available values:\n{available_models}")
config = Config.from_name(model_name) if model_config is None else model_config
precision = precision or get_default_supported_precision(training=True)
devices = parse_devices(devices)
print("devices", devices)
# print("train", train)
out_dir = init_out_dir(out_dir)
# in case the dataset requires the Tokenizer
tokenizer = TTokenizer(tokenizer_dir) if tokenizer_dir is not None else None
logger = CSVLogger(out_dir, name=f"pretrain-{config.name}", flush_logs_every_n_steps=train.log_interval)
if devices > 1:
if parallel_config.strategy_name == "deepspeed_3":
strategy = DeepSpeedStrategy(
stage=3,
offload_optimizer=True,
offload_parameters=True,
cpu_checkpointing=False,
pin_memory=True,
)
elif parallel_config.strategy_name == "deepspeed_2":
strategy = DeepSpeedStrategy(
stage=2,
offload_optimizer=parallel_config.cpu_checkpoint,
pin_memory=parallel_config.cpu_checkpoint,
allgather_bucket_size=5e8,
reduce_bucket_size=5e8
)
else:
strategy = FSDPStrategy(
auto_wrap_policy={Block},
activation_checkpointing_policy=None,
state_dict_type="full",
limit_all_gathers=True,
cpu_offload=parallel_config.cpu_checkpoint,
sharding_strategy="HYBRID_SHARD", # 'FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD'
)
else:
strategy = "auto"
world_size = devices * num_nodes
max_tokens_per_device = train.max_tokens // world_size
tokens_per_iter = train.micro_batch_size * train.max_seq_length
max_iters = max_tokens_per_device // tokens_per_iter
gradient_accumulation_iters = train.gradient_accumulation_iters(devices)
log_iter_interval = train.log_interval * gradient_accumulation_iters
validate_args(train, eval, initial_checkpoint_dir, resume)
model_checkpoint = ModelCheckpoint(dirpath=out_dir,
every_n_train_steps=train.save_interval,
save_last=True,
verbose=True)
trainer = L.Trainer(
accelerator="gpu",
devices=devices,
strategy=strategy,
num_nodes=num_nodes,
precision=precision,
logger=logger,
callbacks=[model_checkpoint],
max_steps=max_iters // gradient_accumulation_iters,
limit_train_batches=max_iters,
enable_checkpointing=True,
use_distributed_sampler=True,
limit_val_batches=eval.max_iters,
gradient_clip_val=1.0,
gradient_clip_algorithm="norm",
accumulate_grad_batches=gradient_accumulation_iters,
log_every_n_steps=train.log_interval,
val_check_interval=eval.interval,
)
logger.log_hyperparams(hparams)
train_dataloader, val_dataloader = get_dataloaders(data, tokenizer, train, train.max_seq_length)
warmup_iters = train.warmup_iters(devices, max_iters, train_dataloader)
trainer.print(f"Loading model with {config.__dict__}")
t0 = time.perf_counter()
model = LightningGPTModule(config,
train,
eval,
parallel_config=parallel_config,
warmup_iters=warmup_iters,
max_iters=max_iters,
gradient_accumulation_iters=gradient_accumulation_iters)
trainer.print(f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.")
trainer.print(f"Total parameters: {num_parameters(model):,}")
L.seed_everything(seed)
# ================== save config
save_hyperparameters(setup, out_dir)
if tokenizer_dir is not None:
copy_config_files(tokenizer_dir, out_dir)
save_config(config, out_dir)
# ==================
train_time = time.perf_counter()
trainer.fit(model, train_dataloader, val_dataloader, ckpt_path="last")
trainer.print(f"Training time: {(time.perf_counter()-train_time):.2f}s")
if trainer.accelerator == "cuda":
trainer.print(f"Memory used: {torch.cuda.max_memory_allocated() / 1e9:.02f} GB")
def get_dataloaders(data: DataModule, tokenizer, train: TrainArgs, block_size: int
) -> Tuple[DataLoader, DataLoader]:
data.connect(tokenizer=tokenizer, batch_size=train.micro_batch_size, max_seq_length=block_size)
data.prepare_data()
data.setup()
train_dataloader = data.train_dataloader()
val_dataloader = data.val_dataloader()
return train_dataloader, val_dataloader
# learning rate decay scheduler (cosine with linear warmup)
def get_lr(learning_rate: float, it: int, warmup_iters: int, max_iters: int, min_lr: float) -> float:
# 1) linear warmup for warmup_iters steps
if it < warmup_iters:
return learning_rate * it / warmup_iters
# 2) if it > max_iters, return min learning rate
if it > max_iters:
return min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - warmup_iters) / (max_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
return min_lr + coeff * (learning_rate - min_lr)
def initialize_weights(model: GPT, n_layer: int, n_embd: int) -> None:
"""GPT-NeoX weight initialization (https://arxiv.org/abs/2204.06745)."""
# Adapted from https://github.com/jzhang38/TinyLlama
def init_weights(module, std):
nn.init.normal_(module.weight, mean=0.0, std=std)
if getattr(module, "bias", None) is not None:
nn.init.zeros_(module.bias)
for mod in model.modules():
if isinstance(mod, (nn.Embedding, nn.Linear)):
mod.reset_parameters = partial(init_weights, mod, std=math.sqrt(2.0 / 5 / n_embd))
# need a separate loop because `mod.proj` below is a `nn.Linear` too
for mod in model.modules():
if isinstance(mod, (LLaMAMLP, CausalSelfAttention)):
mod.proj.reset_parameters = partial(init_weights, mod.proj, std=(1 / math.sqrt(n_embd) / n_layer))
def validate_args(train: TrainArgs, eval: EvalArgs, initial_checkpoint_dir, resume) -> None:
issues = []
unsupported = [(train, ["max_steps", "epochs"]), (eval, ["max_new_tokens"])]
for args, names in unsupported:
for name in names:
if getattr(args, name) is not None:
issues.append(f"{__file__} doesn't support the {name!r} argument. This is set in {args}")
required = [(train, ["max_tokens", "max_norm"])]
for args, names in required:
for name in names:
if getattr(args, name) is None:
issues.append(f"{__file__} requires the {name!r} argument. This is set in {args}")
if initial_checkpoint_dir and resume:
issues.append("Can't provide both `--resume` and `--initial_checkpoint_dir`. Choose one.")
if issues:
raise ValueError("\n".join(issues))
if __name__ == "__main__":
torch.set_float32_matmul_precision("high")
CLI(setup)