-
Notifications
You must be signed in to change notification settings - Fork 0
/
id_table.c
325 lines (287 loc) · 6.89 KB
/
id_table.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/* This file is included by symbol.c */
#include "id_table.h"
#ifndef ID_TABLE_DEBUG
#define ID_TABLE_DEBUG 0
#endif
#if ID_TABLE_DEBUG == 0
#undef NDEBUG
#define NDEBUG
#endif
#include "ruby_assert.h"
typedef rb_id_serial_t id_key_t;
static inline ID
key2id(id_key_t key)
{
return rb_id_serial_to_id(key);
}
static inline id_key_t
id2key(ID id)
{
return rb_id_to_serial(id);
}
/* simple open addressing with quadratic probing.
uses mark-bit on collisions - need extra 1 bit,
ID is strictly 3 bits larger than rb_id_serial_t */
typedef struct rb_id_item {
id_key_t key;
#if SIZEOF_VALUE == 8
int collision;
#endif
VALUE val;
} item_t;
struct rb_id_table {
int capa;
int num;
int used;
item_t *items;
};
#if SIZEOF_VALUE == 8
#define ITEM_GET_KEY(tbl, i) ((tbl)->items[i].key)
#define ITEM_KEY_ISSET(tbl, i) ((tbl)->items[i].key)
#define ITEM_COLLIDED(tbl, i) ((tbl)->items[i].collision)
#define ITEM_SET_COLLIDED(tbl, i) ((tbl)->items[i].collision = 1)
static inline void
ITEM_SET_KEY(struct rb_id_table *tbl, int i, id_key_t key)
{
tbl->items[i].key = key;
}
#else
#define ITEM_GET_KEY(tbl, i) ((tbl)->items[i].key >> 1)
#define ITEM_KEY_ISSET(tbl, i) ((tbl)->items[i].key > 1)
#define ITEM_COLLIDED(tbl, i) ((tbl)->items[i].key & 1)
#define ITEM_SET_COLLIDED(tbl, i) ((tbl)->items[i].key |= 1)
static inline void
ITEM_SET_KEY(struct rb_id_table *tbl, int i, id_key_t key)
{
tbl->items[i].key = (key << 1) | ITEM_COLLIDED(tbl, i);
}
#endif
static inline int
round_capa(int capa)
{
/* minsize is 4 */
capa >>= 2;
capa |= capa >> 1;
capa |= capa >> 2;
capa |= capa >> 4;
capa |= capa >> 8;
capa |= capa >> 16;
return (capa + 1) << 2;
}
static struct rb_id_table *
rb_id_table_init(struct rb_id_table *tbl, int capa)
{
MEMZERO(tbl, struct rb_id_table, 1);
if (capa > 0) {
capa = round_capa(capa);
tbl->capa = (int)capa;
tbl->items = ZALLOC_N(item_t, capa);
}
return tbl;
}
struct rb_id_table *
rb_id_table_create(size_t capa)
{
struct rb_id_table *tbl = ALLOC(struct rb_id_table);
return rb_id_table_init(tbl, (int)capa);
}
void
rb_id_table_free(struct rb_id_table *tbl)
{
xfree(tbl->items);
xfree(tbl);
}
void
rb_id_table_clear(struct rb_id_table *tbl)
{
tbl->num = 0;
tbl->used = 0;
MEMZERO(tbl->items, item_t, tbl->capa);
}
size_t
rb_id_table_size(const struct rb_id_table *tbl)
{
return (size_t)tbl->num;
}
size_t
rb_id_table_memsize(const struct rb_id_table *tbl)
{
return sizeof(item_t) * tbl->capa + sizeof(struct rb_id_table);
}
static int
hash_table_index(struct rb_id_table* tbl, id_key_t key)
{
if (tbl->capa > 0) {
int mask = tbl->capa - 1;
int ix = key & mask;
int d = 1;
while (key != ITEM_GET_KEY(tbl, ix)) {
if (!ITEM_COLLIDED(tbl, ix))
return -1;
ix = (ix + d) & mask;
d++;
}
return ix;
}
return -1;
}
static void
hash_table_raw_insert(struct rb_id_table *tbl, id_key_t key, VALUE val)
{
int mask = tbl->capa - 1;
int ix = key & mask;
int d = 1;
assert(key != 0);
while (ITEM_KEY_ISSET(tbl, ix)) {
ITEM_SET_COLLIDED(tbl, ix);
ix = (ix + d) & mask;
d++;
}
tbl->num++;
if (!ITEM_COLLIDED(tbl, ix)) {
tbl->used++;
}
ITEM_SET_KEY(tbl, ix, key);
tbl->items[ix].val = val;
}
static int
hash_delete_index(struct rb_id_table *tbl, int ix)
{
if (ix >= 0) {
if (!ITEM_COLLIDED(tbl, ix)) {
tbl->used--;
}
tbl->num--;
ITEM_SET_KEY(tbl, ix, 0);
tbl->items[ix].val = 0;
return TRUE;
}
else {
return FALSE;
}
}
static void
hash_table_extend(struct rb_id_table* tbl)
{
if (tbl->used + (tbl->used >> 1) >= tbl->capa) {
int new_cap = round_capa(tbl->num + (tbl->num >> 1));
int i;
item_t* old;
struct rb_id_table tmp_tbl = {0, 0, 0};
if (new_cap < tbl->capa) {
new_cap = round_capa(tbl->used + (tbl->used >> 1));
}
tmp_tbl.capa = new_cap;
tmp_tbl.items = ZALLOC_N(item_t, new_cap);
for (i = 0; i < tbl->capa; i++) {
id_key_t key = ITEM_GET_KEY(tbl, i);
if (key != 0) {
hash_table_raw_insert(&tmp_tbl, key, tbl->items[i].val);
}
}
old = tbl->items;
*tbl = tmp_tbl;
xfree(old);
}
}
#if ID_TABLE_DEBUG && 0
static void
hash_table_show(struct rb_id_table *tbl)
{
const id_key_t *keys = tbl->keys;
const int capa = tbl->capa;
int i;
fprintf(stderr, "tbl: %p (capa: %d, num: %d, used: %d)\n", tbl, tbl->capa, tbl->num, tbl->used);
for (i=0; i<capa; i++) {
if (ITEM_KEY_ISSET(tbl, i)) {
fprintf(stderr, " -> [%d] %s %d\n", i, rb_id2name(key2id(keys[i])), (int)keys[i]);
}
}
}
#endif
int
rb_id_table_lookup(struct rb_id_table *tbl, ID id, VALUE *valp)
{
id_key_t key = id2key(id);
int index = hash_table_index(tbl, key);
if (index >= 0) {
*valp = tbl->items[index].val;
return TRUE;
}
else {
return FALSE;
}
}
static int
rb_id_table_insert_key(struct rb_id_table *tbl, const id_key_t key, const VALUE val)
{
const int index = hash_table_index(tbl, key);
if (index >= 0) {
tbl->items[index].val = val;
}
else {
hash_table_extend(tbl);
hash_table_raw_insert(tbl, key, val);
}
return TRUE;
}
int
rb_id_table_insert(struct rb_id_table *tbl, ID id, VALUE val)
{
return rb_id_table_insert_key(tbl, id2key(id), val);
}
int
rb_id_table_delete(struct rb_id_table *tbl, ID id)
{
const id_key_t key = id2key(id);
int index = hash_table_index(tbl, key);
return hash_delete_index(tbl, index);
}
void
rb_id_table_foreach_with_replace(struct rb_id_table *tbl, rb_id_table_foreach_func_t *func, rb_id_table_update_callback_func_t *replace, void *data)
{
int i, capa = tbl->capa;
for (i=0; i<capa; i++) {
if (ITEM_KEY_ISSET(tbl, i)) {
enum rb_id_table_iterator_result ret = (*func)(Qundef, tbl->items[i].val, data);
assert(ITEM_GET_KEY(tbl, i));
if (ret == ID_TABLE_REPLACE) {
VALUE val = tbl->items[i].val;
ret = (*replace)(NULL, &val, data, TRUE);
tbl->items[i].val = val;
}
else if (ret == ID_TABLE_STOP)
return;
}
}
}
void
rb_id_table_foreach(struct rb_id_table *tbl, rb_id_table_foreach_func_t *func, void *data)
{
int i, capa = tbl->capa;
for (i=0; i<capa; i++) {
if (ITEM_KEY_ISSET(tbl, i)) {
const id_key_t key = ITEM_GET_KEY(tbl, i);
enum rb_id_table_iterator_result ret = (*func)(key2id(key), tbl->items[i].val, data);
assert(key != 0);
if (ret == ID_TABLE_DELETE)
hash_delete_index(tbl, i);
else if (ret == ID_TABLE_STOP)
return;
}
}
}
void
rb_id_table_foreach_values(struct rb_id_table *tbl, rb_id_table_foreach_values_func_t *func, void *data)
{
int i, capa = tbl->capa;
for (i=0; i<capa; i++) {
if (ITEM_KEY_ISSET(tbl, i)) {
enum rb_id_table_iterator_result ret = (*func)(tbl->items[i].val, data);
if (ret == ID_TABLE_DELETE)
hash_delete_index(tbl, i);
else if (ret == ID_TABLE_STOP)
return;
}
}
}