forked from SocialRecsys/SMIN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
358 lines (308 loc) · 15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# coding=UTF-8
import torch as t
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as dataloader
import torch.optim as optim
import pickle
import random
import numpy as np
import time
import dgl
from dgl import DGLGraph
import scipy.sparse as sp
from scipy.sparse import csr_matrix
import argparse
import os
from ToolScripts.TimeLogger import log
from ToolScripts.tools import sparse_mx_to_torch_sparse_tensor
from Interface.BPRData import BPRData
import Interface.evaluate as evaluate
from model import MODEL
from MV_MIL.informax import Informax
modelUTCStr = str(int(time.time()))
device_gpu = t.device("cuda")
isLoadModel = False
LOAD_MODEL_PATH = r"SR-HAN_Yelp_1599990303_hide_dim_8_layer_dim_[8,8,8]_lr_0.05_reg_0.02_topK_10_lambda1_0_lambda2_0"
class Hope():
def __init__(self,args,data,metaPath,subGraph):
self.args = args
self.metaPath = metaPath
#train data and test data
trainMat, testData, _, _, _ = data
self.userNum, self.itemNum = trainMat.shape
train_coo = trainMat.tocoo()
train_u, train_v, train_r = train_coo.row, train_coo.col, train_coo.data
assert np.sum(train_r == 0) == 0
train_data = np.hstack((train_u.reshape(-1,1),train_v.reshape(-1,1))).tolist()#//(u,v)list
test_data = testData
train_dataset = BPRData(train_data, self.itemNum, trainMat, 1, True) #num_negtive samples
test_dataset = BPRData(test_data, self.itemNum, trainMat, 0, False)
self.train_loader = dataloader.DataLoader(train_dataset, batch_size=self.args.batch, shuffle=True, num_workers=0)
self.test_loader = dataloader.DataLoader(test_dataset, batch_size=1024*1000, shuffle=False,num_workers=0) #test batch=1024
#user metaPath: UU UIU UITIU ITI IUI
self.uu_graph = dgl.graph(self.metaPath['UU'], ntype='user', etype='social')
self.uiu_graph = dgl.graph(self.metaPath['UIU'], ntype='user', etype='rating')
self.uitiu_graph = dgl.graph(self.metaPath['UITIU'], ntype='user', etype='rating')
# self.user_graph =[self.uu_graph, self.uiu_graph, self.uitiu_graph] #7 cases
#item metapath IUI ITI
self.iti_graph = dgl.graph(self.metaPath['ITI'], ntype='item', etype='category')
self.iui_graph = dgl.graph(self.metaPath['IUI'], ntype='item', etype='raitng')
# self.item_graph =[self.iui_graph, self.iti_graph] #3 cases
#according args to append metapath graph to user graph or item graph
self.graph_dict={}
self.graph_dict['uu']=self.uu_graph
self.graph_dict['uiu']=self.uiu_graph
self.graph_dict['uitiu']=self.uitiu_graph
self.graph_dict['iui']=self.iui_graph
self.graph_dict['iti']=self.iti_graph
print("user metaPath: "+self.args.user_graph_indx)
user_graph_list = self.args.user_graph_indx.split('_')
self.user_graph = []
for i in range(len(user_graph_list)):
self.user_graph.append(self.graph_dict[user_graph_list[i]])
print("item metaPath: "+self.args.item_graph_indx)
item_graph_list = self.args.item_graph_indx.split('_')
self.item_graph = []
for i in range(len(item_graph_list)):
self.item_graph.append(self.graph_dict[item_graph_list[i]])
del self.graph_dict, self.uu_graph, self.uiu_graph, self.uitiu_graph, self.iui_graph, self.iti_graph
#informax
if self.args.informax == 1:
(self.ui_graphAdj,self.ui_subGraphAdj) = subGraph
self.ui_subGraphAdj_Tensor = sparse_mx_to_torch_sparse_tensor(self.ui_subGraphAdj).cuda()
self.ui_subGraphAdj_Norm =t.from_numpy(np.sum(self.ui_subGraphAdj,axis=1)).float().cuda()
self.ui_graph = DGLGraph(self.ui_graphAdj)
#data for plot
self.train_losses = []
self.test_hr = []
self.test_ndcg = []
def prepareModel(self):
np.random.seed(args.seed)
t.manual_seed(args.seed)
t.cuda.manual_seed(args.seed)
random.seed(args.seed)
self.out_dim = self.args.hide_dim + sum(eval(self.args.layer_dim))
#metapath encoder model
self.model = MODEL(len(self.user_graph),
len(self.item_graph),
self.userNum,
self.itemNum,
self.args.hide_dim,
eval(self.args.layer_dim)).cuda()
#informax
if self.args.informax == 1:
if self.args.informax_graph_act == 'sigmoid':
informaxGraphAct = nn.Sigmoid()
elif self.args.informax_graph_act == 'tanh':
informaxGraphAct = nn.Tanh()
print('informax graph-level Act funciton: '+self.args.informax_graph_act )
self.ui_informax = Informax(self.ui_graph,self.out_dim, self.out_dim, nn.PReLU(), informaxGraphAct,self.ui_graphAdj).cuda()
self.opt = optim.Adam([
{'params':self.model.parameters(),'weight_decay':0},
{'params':self.ui_informax.parameters(),'weight_decay':0},
],lr=self.args.lr)
else:
self.opt = optim.Adam(self.model.parameters(),lr=self.args.lr)
def predictModel(self,user, pos_i, neg_j, isTest=False):
if isTest:
pred_pos = t.sum(user * pos_i, dim=1)
return pred_pos
else:
pred_pos = t.sum(user * pos_i, dim=1)
pred_neg = t.sum(user * neg_j, dim=1)
return pred_pos, pred_neg
def adjust_learning_rate(self):
# lr = self.lr * (self.args.decay**epoch)
if self.opt != None:
for param_group in self.opt.param_groups:
param_group['lr'] = max(param_group['lr'] * self.args.decay, self.args.minlr)
# print(param_group['lr'])
def getModelName(self):
title = "SR-HAN" + "_"
ModelName = title + self.args.dataset + "_" + modelUTCStr +\
"_hide_dim_" + str(self.args.hide_dim) +\
"_layer_dim_" + str(self.args.layer_dim) +\
"_lr_" + str(self.args.lr) +\
"_reg_" + str(self.args.reg) +\
"_topK_" + str(self.args.topk) +\
"_graph_" + str(self.args.user_graph_indx) +"_"+ str(self.args.item_graph_indx) +\
"_useInformax_" + str(self.args.informax) +\
"_"+str(self.args.k_hop_num) + "hopSubGraph"+\
"_lambda1_" + str(self.args.lambda1) +\
"_lambda2_" + str(self.args.lambda2)
return ModelName
def saveHistory(self):
history = dict()
history['loss'] = self.train_losses
history['hr'] = self.test_hr
history['ndcg'] = self.test_ndcg
ModelName = self.getModelName()
with open(r'./History/' + dataset + r'/' + ModelName + '.his', 'wb') as fs:
pickle.dump(history, fs)
def saveModel(self):
ModelName = self.getModelName()
history = dict()
history['loss'] = self.train_losses
history['hr'] = self.test_hr
history['ndcg'] = self.test_ndcg
savePath = r'./Model/' + dataset + r'/' + ModelName + r'.pth'
params = {
'model': self.model,
'epoch': self.curEpoch,
'args': self.args,
'opt': self.opt,
'history':history
}
t.save(params, savePath)
log("save model : " + ModelName)
def loadModel(self, modelPath):
checkpoint = t.load(r'./Model/' + dataset + r'/' + modelPath + r'.pth')
self.curEpoch = checkpoint['epoch'] + 1
self.model = checkpoint['model']
self.args = checkpoint['args']
self.opt = checkpoint['opt']
history = checkpoint['history']
self.train_losses = history['loss']
self.test_hr = history['hr']
self.test_ndcg = history['ndcg']
log("load model %s in epoch %d"%(modelPath, checkpoint['epoch']))
def trainModel(self):
epoch_loss = 0
epoch_informax_loss=0
self.train_loader.dataset.ng_sample()
for user, item_i, item_j in self.train_loader:
##a batch
bpr_loss = 0
user = user.long().cuda()
item_i =item_i.long().cuda()
item_j = item_j.long().cuda()
self.userEmbed,self.itemEmbed = self.model(self.user_graph, self.item_graph)
#predict
pred_pos, pred_neg = self.predictModel(self.userEmbed[user], self.itemEmbed[item_i], self.itemEmbed[item_j])
bprloss = -(pred_pos.view(-1) - pred_neg.view(-1)).sigmoid().log().sum()
bpr_loss += bprloss
epoch_loss += bpr_loss.item()
regLoss=(t.norm(self.userEmbed[user])**2+t.norm(self.itemEmbed[item_i])**2+t.norm(self.itemEmbed[item_j])**2)
loss = 0.5*(bpr_loss + regLoss*self.args.reg)/self.args.batch
#DGIloss
if self.args.informax == 1:
ui_informax_loss = 0
self.allEmbed = t.cat([self.userEmbed,self.itemEmbed],dim=0)
if self.args.lambda1 != 0 or self.args.lambda2 != 0:
res = self.ui_informax(self.allEmbed, self.ui_subGraphAdj, self.ui_subGraphAdj_Tensor,self.ui_subGraphAdj_Norm)
Mask = t.zeros((self.userNum+self.itemNum)).cuda()
Mask[user]=1
Mask[self.userNum+item_i] = 1
Mask[self.userNum+item_j] = 1
informax_loss = self.args.lambda1*(((Mask*res[0]).sum()+(Mask*res[1]).sum())/t.sum(Mask))\
+self.args.lambda2*(((Mask*res[2]).sum()+(Mask*res[3]).sum())/t.sum(Mask)+res[4])
epoch_informax_loss += informax_loss.item()
loss = loss + informax_loss
self.opt.zero_grad()
loss.backward()
self.opt.step()
return epoch_loss
def testModel(self):
HR=[]
NDCG=[]
with t.no_grad():
self.userEmbed,self.itemEmbed = self.model(self.user_graph, self.item_graph)
for test_u, test_i in self.test_loader:
test_u = test_u.long().cuda()
test_i = test_i.long().cuda()
pred = self.predictModel(self.userEmbed[test_u], self.itemEmbed[test_i], None, isTest=True)
batch = int(test_u.cpu().numpy().size/100)
for i in range(batch):
batch_socres=pred[i*100:(i+1)*100].view(-1)
_,indices=t.topk(batch_socres,self.args.topk)
tmp_item_i=test_i[i*100:(i+1)*100]
recommends=t.take(tmp_item_i,indices).cpu().numpy().tolist()
gt_item=tmp_item_i[0].item()
HR.append(evaluate.hit(gt_item,recommends))
NDCG.append(evaluate.ndcg(gt_item,recommends))
return np.mean(HR),np.mean(NDCG)
def run(self):
self.prepareModel()
if isLoadModel:
self.loadModel(LOAD_MODEL_PATH)
HR,NDCG = self.testModel()
log("HR@10=%.4f, NDCG@10=%.4f"%(HR, NDCG))
return
loss = 0
self.curEpoch = 0
best_hr=-1
best_ndcg=-1
best_epoch=-1
wait=0
for e in range(args.epochs+1):
self.curEpoch = e
#train
log("**************************************************************")
epoch_loss = self.trainModel()
self.train_losses.append(epoch_loss)
log("epoch %d/%d, epoch_loss=%.2f"%(e, args.epochs, epoch_loss))
#test
HR, NDCG = self.testModel()
self.test_hr.append(HR)
self.test_ndcg.append(NDCG)
log("epoch %d/%d, HR@10=%.4f, NDCG@10=%.4f"%(e, args.epochs, HR, NDCG))
self.adjust_learning_rate()
if HR>best_hr:
best_hr,best_ndcg,best_epoch=HR,NDCG,e
wait=0
self.saveModel()
else:
wait+=1
print('wait=%d'%(wait))
self.saveHistory()
if wait==self.args.patience:
log('Early stop! best epoch = %d'%(best_epoch))
self.loadModel(self.getModelName())
break
print("*****************************")
log("best epoch = %d, HR= %.4f, NDCG=%.4f"% (best_epoch,best_hr,best_ndcg))
print("*****************************")
print(self.args)
log("model name : %s"%(self.getModelName()))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SR-HAN main.py')
parser.add_argument('--dataset', type=str, default='CiaoDVD')
parser.add_argument('--batch', type=int, default=8192, metavar='N', help='input batch size for training')
parser.add_argument('--seed', type=int, default=29, metavar='int', help='random seed')
parser.add_argument('--decay', type=float, default=0.97, metavar='LR_decay', help='decay')
parser.add_argument('--lr', type=float, default=0.05, metavar='LR', help='learning rate')
parser.add_argument('--minlr', type=float,default=0.0001)
parser.add_argument('--reg', type=float, default=0.05)
parser.add_argument('--epochs', type=int, default=400, metavar='N', help='number of epochs to train')
parser.add_argument('--patience', type=int, default=5, metavar='int', help='early stop patience')
parser.add_argument('--topk', type=int, default=10)
parser.add_argument('--hide_dim', type=int, default=16, metavar='N', help='embedding size')
parser.add_argument('--layer_dim',nargs='?', default='[16]', help='Output size of every layer')
parser.add_argument('--user_graph_indx', nargs=r"?", default="uu_uiu_uitiu", help='user graph')
parser.add_argument('--item_graph_indx', nargs=r"?", default="iui_iti", help='item graph')
parser.add_argument('--gcn_act', default='prelu',help='metaPath gcn activation function')
#informax
parser.add_argument('--informax', type=int, default=1, help="whether use informax model block")
parser.add_argument('--informax_graph_act',default='sigmoid',help='informax graph activation function')
parser.add_argument('--lambda1', type=float, default=0.06, help='weight of loss with informax')
parser.add_argument('--lambda2', type=float, default=0.002, help='weight of loss with informax')
parser.add_argument('--k_hop_num',type=int,default=2,help='k-hop of subgraph')
args = parser.parse_args()
print(args)
dataset = args.dataset
with open(r'dataset/'+args.dataset+'/metaPath.pkl', 'rb') as fs:
metaPath = pickle.load(fs)
with open(r'dataset/'+args.dataset+'/data.pkl', 'rb') as fs:
data = pickle.load(fs)
subGraphPath=r'dataset/'+args.dataset+'/'+str(args.k_hop_num)+'hop_ui_subGraph.pkl'
if not os.path.exists(subGraphPath):
print('please run '+'dataset/'+args.dataset+'/GenerateSubGraph.py first!')
exit()
else:
with open(subGraphPath,'rb') as fs:
subGraph = pickle.load(fs)
hope = Hope(args,data,metaPath,subGraph)
modelName = hope.getModelName()
print('ModelName = ' + modelName)
hope.run()