-
Notifications
You must be signed in to change notification settings - Fork 2
Clustered regression
121onto edited this page Feb 20, 2019
·
3 revisions
-
Setup your workspace:
from __future__ import print_function from __future__ import absolute_import from __future__ import division import pandas as pd import numpy as np from py_metrics import caches from py_metrics.regress import Cluster frame = pd.read_csv(caches.data_path('ddk2011.txt')) frame['intercept'] = 1.0 std = frame['totalscore'].std() mu = frame['totalscore'].mean() frame['testscore'] = (frame['totalscore'] - mu) / std
-
Fit the regression:
# Initialize x = ['intercept', 'tracking'] y = 'testscore' grp = 'schoolid' reg = Cluster(x, y, grp) reg.fit(frame) reg.summarize()
-
Estimate a cluster-robust covariance matrix:
vce = pd.DataFrame( reg.vce('cr3'), index=reg.x_cols, columns=reg.x_cols) print(vce)
Additional examples with more detail are available in the examples directory.