Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
wil-j-wil authored Nov 2, 2021
1 parent 0922735 commit 8a901ad
Showing 1 changed file with 38 additions and 12 deletions.
50 changes: 38 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -50,38 +50,64 @@ This software is provided under the Apache License 2.0. See the accompanying LIC
## Citing Bayes-Newton

```
@software{bayesnewton2021github,
author = {William J. Wilkinson},
title = {{Bayes-Newton}},
url = {https://github.com/AaltoML/BayesNewton},
version = {0.0},
year = {2021},
@article{wilkinson2021bayesnewton,
title = {{B}ayes-{N}ewton Methods for Approximate {B}ayesian Inference with {PSD} Guarantees},
author = {Wilkinson, William J. and S\"arkk\"a, Simo and Solin, Arno},
journal={arXiv preprint},
year={2021}
}
```

## Implemented Models
For a full list of the all the models available see the [model class list](https://github.com/AaltoML/BayesNewton/blob/main/bayesnewton/models.py).

### Variational GPs
- **Variationl GP** *(Opper, Archambeau: The Variational Gaussian Approximation Revisited, Neural Computation 2009; Khan, Lin: Conugate-Computation Variational Inference - Converting Inference in Non-Conjugate Models in to Inference in Conjugate Models, AISTATS 2017)*
- **Sparse Variational GP** *(Hensman, Matthews, Ghahramani: Scalable Variational Gaussian Process Classification, AISTATS 2015)*
- **Sparse Variational GP** *(Hensman, Matthews, Ghahramani: Scalable Variational Gaussian Process Classification, AISTATS 2015; Adam, Chang, Khan, Solin: Dual Parameterization of Sparse Variational Gaussian Processes, NeurIPS 2021)*
- **Markov Variational GP** *(Chang, Wilkinson, Khan, Solin: Fast Variational Learning in State Space Gaussian Process Models, MLSP 2020)*
- **Sparse Markov Variational GP** *(Adam, Eleftheriadis, Durrande, Artemev, Hensman: Doubly Sparse Variational Gaussian Processes, AISTATS 2020; Wilkinson, Solin, Adam: Sparse Algorithms for Markovian Gaussian Processes, AISTATS 2021)*
- **Spatio-Temporal Variational GP** *(Hamelijnck, Wilkinson, Loppi, Solin, Damoulas: Spatio-Temporal Variational Gaussian Processes, NeurIPS 2021)*
### Expectation Propagation GPs
- **Expectation Propagation GP** *(Minka: A Family of Algorithms for Approximate Bayesian Inference, Ph. D thesis 2000)*
- **Sparse Expectation Propagation GP (energy not working)** *(Csato, Opper: Sparse on-line Gaussian processes, Neural Computation 2002; Bui, Yan, Turner: A Unifying Framework for Gaussian Process Pseudo Point Approximations Using Power Expectation Propagation, JMLR 2017)*
- **Markov Expectation Propagation GP** *(Wilkinson, Chang, Riis Andersen, Solin: State Space Expectation Propagation, ICML 2020)*
- **Sparse Markov Expectation Propagation GP** *(Wilkinson, Solin, Adam: Sparse Algorithms for Markovian Gaussian Processes, AISTATS 2021)*
### Laplace GPs
### Laplace/Newton GPs
- **Laplace GP** *(Rasmussen, Williams: Gaussian Processes for Machine Learning, 2006)*
- **Sparse Laplace GP**
- **Markov Laplace GP**
- **Sparse Laplace GP** *(Wilkinson, Särkkä, Solin: Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees)*
- **Markov Laplace GP** *(Wilkinson, Särkkä, Solin: Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees)*
- **Sparse Markov Laplace GP**
### Linearisation GPs
- **Posterior Linearisation GP** *(Garcia-Fernandez, Tronarp, Sarkka: Gaussian Process Classification Using Posterior Linearization, IEEE Signal Processing 2019; Steinberg, Bonilla: Extended and Unscented Gaussian Processes, NeurIPS 2014)*
- **Posterior Linearisation GP** *(García-Fernández, Tronarp, Sarkka: Gaussian Process Classification Using Posterior Linearization, IEEE Signal Processing 2019; Steinberg, Bonilla: Extended and Unscented Gaussian Processes, NeurIPS 2014)*
- **Sparse Posterior Linearisation GP**
- **Markov Posterior Linearisation GP** *(Garcia-Fernandez, Svensson, Sarkka: Iterated Posterior Linearization Smoother, IEEE Automatic Control 2016; Wilkinson, Chang, Riis Andersen, Solin: State Space Expectation Propagation, ICML 2020)*
- **Markov Posterior Linearisation GP** *(García-Fernández, Svensson, Sarkka: Iterated Posterior Linearization Smoother, IEEE Automatic Control 2016; Wilkinson, Chang, Riis Andersen, Solin: State Space Expectation Propagation, ICML 2020)*
- **Sparse Markov Posterior Linearisation GP** *(Wilkinson, Solin, Adam: Sparse Algorithms for Markovian Gaussian Processes, AISTATS 2021)*
- **Taylor Expansion / Analytical Linearisaiton GP** *(Steinberg, Bonilla: Extended and Unscented Gaussian Processes, NeurIPS 2014)*
- **Markov Taylor GP / Extended Kalman Smoother** *(Bell: The Iterated Kalman Smoother as a Gauss-Newton method, SIAM Journal on Optimization 1994)*
- **Sparse Taylor GP**
- **Sparse Markov Taylor GP / Sparse Extended Kalman Smoother** *(Wilkinson, Solin, Adam: Sparse Algorithms for Markovian Gaussian Processes, AISTATS 2021)*

## Gauss-Newton GPs
*(Wilkinson, Särkkä, Solin: Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees)*
- **Gauss-Newton**
- **Variational Gauss-Newton**
- **PEP Gauss-Newton**
- **2nd-order PL Gauss-Newton**

## Quasi-Newton GPs
*(Wilkinson, Särkkä, Solin: Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees)*
- **Quasi-Newton**
- **Variational Quasi-Newton**
- **PEP Quasi-Newton**
- **PL Quasi-Newton**

## GPs with PSD Constraints via Riemannian Gradients
- **VI Riemann Grad** *Lin, Schmidt, Khan: Handling the Positive-Definite Constraint in the Bayesian Learning Rule, ICML 2020*
- **Newton/Laplace Riemann Grad** *Lin, Schmidt, Khan: Handling the Positive-Definite Constraint in the Bayesian Learning Rule, ICML 2020*
- **PEP Riemann Grad** *(Wilkinson, Särkkä, Solin: Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees)*

## Others

- **Infinite Horizon GP** *(Solin, Hensman, Turner: Infinite-Horizon Gaussian Processes, NeurIPS 2018)*
- **Parallel Markov GP (with VI, EP, PL, ...)** *(Särkkä, García-Fernández: Temporal parallelization of Bayesian smoothers; Corenflos, Zhao, Särkkä: Gaussian Process Regression in Logarithmic Time; Hamelijnck, Wilkinson, Loppi, Solin, Damoulas: Spatio-Temporal Variational Gaussian Processes, NeurIPS 2021)*
- **2nd-order Posterior Linearisation GP (sparse, Markov, ...)** *(Wilkinson, Särkkä, Solin: Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees)*

0 comments on commit 8a901ad

Please sign in to comment.