Skip to content

Commit

Permalink
docs(notebook-link): update link to example notebooks
Browse files Browse the repository at this point in the history
  • Loading branch information
ninopleno committed Dec 15, 2023
1 parent 238d485 commit 43b4e7f
Show file tree
Hide file tree
Showing 6 changed files with 171 additions and 38,438 deletions.
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,8 +78,8 @@ $ pip3 install "anomalytics[codequality,docs,security,testcov,extra]"
`anomalytics` can be used to analyze anomalies in your dataset (both as `pandas.DataFrame` or `pandas.Series`). To start, let's follow along with this minimum example where we want to detect extremely high anomalies in our dataset.

Read the walkthrough below, or the concrete examples here:
* [Extreme Anomaly Analysis - DataFrame](docs/examples/extreme_anomaly_df_analysis.ipynb)
* [Battery Water Level Analysis - Time Series](docs/examples/battery_water_level_analysis.ipynb)
* [Extreme Anomaly Analysis - DataFrame](https://github.com/Aeternalis-Ingenium/anomalytics/blob/trunk/docs/examples/extreme_anomaly_df_analysis.ipynb)
* [Battery Water Level Analysis - Time Series](https://github.com/Aeternalis-Ingenium/anomalytics/blob/trunk/docs/examples/battery_water_level_analysis.ipynb)

### Anomaly Detection via the `Detector` Instance

Expand Down Expand Up @@ -142,7 +142,7 @@ Read the walkthrough below, or the concrete examples here:
T2: 10000
```

![Ad Impressions Hist]([docs/assets/readme/02-AdImpressionsNormDistributions.png](https://github.com/Aeternalis-Ingenium/anomalytics/raw/trunk/docs/assets/readme/02-AdImpressionsNormDistributions.png))
![Ad Impressions Hist](https://github.com/Aeternalis-Ingenium/anomalytics/raw/trunk/docs/assets/readme/02-AdImpressionsNormDistributions.png)

4. Now, we can extract exceedances by giving the expected `q`uantile:

Expand Down
Loading

0 comments on commit 43b4e7f

Please sign in to comment.