-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
451 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,297 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Fri May 15 19:08:07 2020 | ||
@author: ameanasad | ||
""" | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import matplotlib.animation as animation | ||
from sklearn.neighbors import KDTree | ||
import random as r | ||
plt.rcParams['animation.ffmpeg_path'] = '/usr/local/bin/ffmpeg' | ||
|
||
# Random Seed set to 0 initializes the same pseudorandom number generator for multiple experiments. | ||
# Comment the random seeds out to use a different random generator everytime you run the code | ||
r.seed(0) | ||
np.random.seed(0) | ||
|
||
class PandemicSpread(object): | ||
|
||
def __init__(self, size, nodes, infectionRate, radius, speed): | ||
#nodes is the number of particle in the experiment | ||
self.nodeSize = nodes | ||
# Size is the dimension of the enclosing container for the particles | ||
self.size = size | ||
self.nodes_all = {"Infected": [], | ||
"Susceptible": [], | ||
"Dead": [], | ||
"Recovered" : []} | ||
self.infectionRate = infectionRate | ||
self.radius = radius | ||
self.speed = speed | ||
|
||
def deployNodes(self): | ||
""" | ||
Deploy all the nodes in random positions | ||
""" | ||
for i in range(self.nodeSize): | ||
newNode = Node(self.size, "Susceptible", self.speed) | ||
self.nodes_all['Susceptible'].append(newNode) | ||
|
||
def startInfection(self): | ||
""" | ||
Start infection by deploying one random infected node. | ||
""" | ||
newNode = Node(self.size, "Infected", self.speed ) | ||
self.nodes_all['Infected'].append(newNode) | ||
|
||
def checkInfection(self, node): | ||
""" | ||
Parameters | ||
---------- | ||
node : Object | ||
A susceptible type node object. | ||
Returns | ||
------- | ||
Boolean | ||
True if node becomes infected, false otherwise. | ||
""" | ||
|
||
# Used a K-dimensional tree to find neighbors within a givin radius | ||
infected = self.getInfectedCoordinates() | ||
infected = np.array(infected) | ||
node = np.array([node.getCoordinates()]) | ||
tree = KDTree(infected, leaf_size = 20) | ||
# We query the neighbors based on the radius of infection | ||
indices = tree.query_radius(node, r=self.radius) | ||
|
||
if(len(indices[0]) > 0): | ||
# Added another layer of infection checking by using the infection rate | ||
state = np.random.choice( | ||
[False, True], | ||
1, | ||
p=[1-self.infectionRate, self.infectionRate] | ||
) | ||
return state[0] | ||
else: | ||
return False | ||
|
||
def updateNodes(self): | ||
""" | ||
Updates all node position and updates new infections, recoveries and deaths. | ||
""" | ||
infections = [] | ||
recoveries = [] | ||
deaths = [] | ||
|
||
for node in self.nodes_all["Susceptible"]: | ||
node.takeStep() | ||
if node.state == "Susceptible": | ||
infected = self.checkInfection(node) | ||
if infected==True: | ||
infections.append(node) | ||
|
||
for node in self.nodes_all['Infected']: | ||
node.takeStep() | ||
if node.state == "Recovered": | ||
recoveries.append(node) | ||
if node.state == "Dead": | ||
deaths.append(node) | ||
|
||
for node in self.nodes_all['Recovered']: | ||
node.takeStep() | ||
|
||
for infection in infections: | ||
infection.changeState("Infected") | ||
self.nodes_all["Susceptible"].remove(infection) | ||
self.nodes_all["Infected"].append(infection) | ||
|
||
for recovery in recoveries: | ||
self.nodes_all["Infected"].remove(recovery) | ||
self.nodes_all["Recovered"].append(recovery) | ||
|
||
for death in deaths: | ||
self.nodes_all["Infected"].remove(death) | ||
self.nodes_all["Dead"].append(death) | ||
|
||
def getInfectedCoordinates(self): | ||
""" | ||
Gets the coordinates of all infected nodes. Coordinates are represented | ||
in a tuple. | ||
Returns | ||
------- | ||
nodes : list | ||
List of 2-tuple coordinate vectors. | ||
""" | ||
nodes = self.nodes_all['Infected'] | ||
nodes = map(lambda node: node.getCoordinates(), nodes) | ||
nodes = list(nodes) | ||
return nodes | ||
|
||
def getCoordinates(self, name): | ||
""" | ||
Gets the coordinates of nodes. Coordinates are represented | ||
in a tuple. | ||
Returns | ||
------- | ||
nodes : list | ||
List of 2-tuple coordinate vectors. | ||
""" | ||
nodes = self.nodes_all[name] | ||
nodes = map(lambda node: node.getCoordinates(), nodes) | ||
nodes = list(nodes) | ||
return nodes | ||
|
||
def getSample(self, name): | ||
""" | ||
Parameters | ||
---------- | ||
name : String | ||
State of nodes desired. | ||
Returns | ||
------- | ||
Two lists of node coordinates. | ||
""" | ||
nodes = self.nodes_all[name] | ||
nodes = map(lambda node: node.getCoordinates(), nodes) | ||
nodes = list(nodes) | ||
|
||
X = map(lambda node: node[0], nodes) | ||
Y = map(lambda node: node[1], nodes) | ||
|
||
X = list(X) | ||
Y = list(Y) | ||
return X,Y | ||
|
||
def getApiResponse(self): | ||
""" | ||
I wrote this function so the coordinates, and colors of the nodes can | ||
be exported as an API response to be used in different visualization | ||
frameworks. | ||
Returns | ||
------- | ||
nodes : list of dictionaries | ||
Each dict object contains the coordinates and color of the node. | ||
""" | ||
states = ["Infected", "Susceptible", "Recovered", "Dead"] | ||
nodes =[] | ||
for state in states: | ||
nodes += self.nodes_all[state] | ||
func = lambda node: {"Coord": node.getCoordinates(), "Color": node.getColor()} | ||
|
||
nodes = map(func, nodes) | ||
nodes = list(nodes) | ||
return nodes | ||
|
||
def getInfectionNo(self): | ||
return len(self.nodes_all['Infected']) | ||
|
||
def getSusceptibleNo(self): | ||
return len(self.nodes_all['Susceptible']) | ||
|
||
def getRecoveredNo(self): | ||
return len(self.nodes_all['Recovered']) | ||
|
||
def getDeathsnNo(self): | ||
return len(self.nodes_all['Dead']) | ||
|
||
|
||
|
||
class Node(object): | ||
def __init__(self, max_coordinate, state, speed): | ||
self.x = r.randint(-max_coordinate*2,max_coordinate*2) | ||
self.y = r.randint(-max_coordinate,max_coordinate) | ||
self.state = state | ||
self.colorMap = { | ||
"Susceptible": "blue", | ||
"Infected": "red", | ||
"Recovered": "Green", | ||
"Dead": "black"} | ||
self.counter = 0 | ||
self.angle = np.random.uniform(0,2*np.pi) | ||
self.max = max_coordinate | ||
self.speed = speed | ||
|
||
def getCoordinates(self): | ||
return [self.x,self.y] | ||
|
||
def takeStep(self): | ||
if self.state == "Infected": | ||
if self.counter == 400: | ||
|
||
state = np.random.choice( | ||
['Dead', 'Recovered'], | ||
1, | ||
p=[0.1, 0.9] | ||
) | ||
self.state = state[0] | ||
else: | ||
self.counter+=1 | ||
|
||
x = self.x | ||
y = self.y | ||
y += np.cos(self.angle)*self.speed | ||
x += np.sin(self.angle)*self.speed | ||
if abs(x) < self.max*2: | ||
self.x = x | ||
else: | ||
self.angle = np.random.uniform(0,2*np.pi) | ||
if abs(y) < self.max - 5: | ||
self.y = y | ||
else: | ||
self.angle = np.random.uniform(0,2*np.pi) | ||
|
||
def state(self): | ||
return self.state | ||
def getColor(self): | ||
return self.colorMap[self.state] | ||
def changeState(self, state): | ||
self.state = state | ||
|
||
def __str__(self): | ||
return str((self.x,self.y)) | ||
|
||
def __repr__(self): | ||
return str((self.x,self.y)) | ||
|
||
|
||
|
||
|
||
|
||
""" | ||
Below is a sample test run to show how the model is used. | ||
""" | ||
|
||
|
||
# size = 300 | ||
# nodes = 160 | ||
# infectionRate = 0.5 | ||
# radius = 7 | ||
# speed = 1.9 | ||
# steps = 50 | ||
# pandemic = PandemicSpread(size, nodes, infectionRate, radius, speed) | ||
# pandemic.startInfection() | ||
# pandemic.deployNodes() | ||
|
||
# for step in range(steps): | ||
# pandemic.takeStep() | ||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
numpy>=1.18.1 | ||
scipy>=1.4.1 | ||
scikit-learn>=0.22.1 | ||
matplotlib>=3.1.3 |
Oops, something went wrong.