This is the PyTorch implementation for the paper BERT4ETH: A Pre-trained Transformer for Ethereum Fraud Detection, accepted by the ACM Web conference (WWW) 2023.
I have recovered the experiment results and am doing final check. (2023/11/29)
If you find this repository useful, please give us a star and cite our paper : ) Thank you!
PyTorch > 1.12.0
-
Transaction Dataset:
cd BERT4ETH_PyTorch/data; # Labels are already included
unzip ...;
cd src;
python gen_seq.py --bizdate=bert4eth_exp
python run_pretrain.py --bizdate="bert4eth_exp" \
--ckpt_dir="bert4eth_exp"
python run_embed.py --bizdate="bert4eth_exp" \
--init_checkpoint="bert4eth_exp/xxx.pth"
cd eval
python phish_detection_mlp.py --input_dir="../outputs/xxx"
python run_dean_ENS.py --metric=euclidean \
--init_checkpoint=bert4eth_exp/model_104000
Will update later..
@inproceedings{hu2023bert4eth,
title={BERT4ETH: A Pre-trained Transformer for Ethereum Fraud Detection},
author={Hu, Sihao and Zhang, Zhen and Luo, Bingqiao and Lu, Shengliang and He, Bingsheng and Liu, Ling},
booktitle={Proceedings of the ACM Web Conference 2023},
pages={2189--2197},
year={2023}
}
If you have any questions, you can either open an issue or contact me ([email protected]), and I will reply as soon as I see the issue or email.