Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added squircle to shapes2d.scad #1517

Merged
merged 15 commits into from
Dec 12, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
129 changes: 128 additions & 1 deletion shapes2d.scad
Original file line number Diff line number Diff line change
Expand Up @@ -1929,7 +1929,7 @@ function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) =
// Usage: As Function
// path = reuleaux_polygon(n, r|d=, ...);
// Description:
// When called as a module, reates a 2D Reuleaux Polygon; a constant width shape that is not circular. Uses "intersect" type anchoring.
// When called as a module, creates a 2D Reuleaux Polygon; a constant width shape that is not circular. Uses "intersect" type anchoring.
// When called as a function, returns a 2D path for a Reulaux Polygon.
// Arguments:
// n = Number of "sides" to the Reuleaux Polygon. Must be an odd positive number. Default: 3
Expand Down Expand Up @@ -1988,6 +1988,133 @@ function reuleaux_polygon(n=3, r, d, anchor=CENTER, spin=0) =



// Function&Module: squircle()
// Synopsis: Creates a shape between a circle and a square, centered on the origin.
// SynTags: Geom, Path
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
// See Also: circle(), square(), supershape()
// Usage: As Module
// squircle(size, [squareness], [style]) [ATTACHMENTS];
// Usage: As Function
// path = squircle(size, [squareness], [style]);
// Description:
// A [squircle](https://en.wikipedia.org/wiki/Squircle) is a shape intermediate between a square/rectangle and a circle/ellipse.Squircles are sometimes used to make dinner plates (more area for the same radius as a circle), keyboard buttons, and smartphone icons. Old CRT television screens also resembled elongated squircles.
// .
// There are multiple approaches to constructing a squircle. One approach is a special case of superellipse (shown in {{supershape()}} example 3), and uses exponents between 2 and infinity to adjust the shape. Another, the Fernández-Guasti squircle or FG squircle, arises from work in optics and uses a "squareness" parameter between 0 and 1 to adjust the shape. We use the same squareness parameter for both types, adjusting the internal FG parameter or superellipse exponent as needed to achieve the same squircle corner extents.
// .
// The FG style and superellipse style squircles are visually almost indistinguishable, with the superellipse having slightly rounder "corners" than FG for a given value of squareness. Either style requires just the two parameters `squareness` and `size`. The vertex distribution is adjusted to be more dense at the corners for smoothness at low values of `$fn`.
// .
// When called as a module, creates a 2D squircle with the desired squareness.
// When called as a function, returns a 2D path for a squircle.
// Arguments:
// size = Same as the `size` parameter in `square()`, can be a single number or a vector `[xsize,ysize]`.
// squareness = Value between 0 and 1. Controls the shape, setting the location of a squircle "corner" at the specified interpolated position between a circle and a square. When `squareness=0` the shape is a circle, and when `squareness=1` the shape is a square. For the "superellipse" style, the special case where the superellipse exponent is 4 (also known as *Lamé's quartic curve*) results in a squircle at the geometric mean between radial points on the circle and square, corresponding to squareness=0.456786. Default: 0.5
// style = method for generating a squircle, "fg" for Fernández-Guasti and "superellipse" for superellipse. Default: "fg"
// atype = anchor type, "box" for bounding box corners and sides, "perim" for the squircle corners
// $fn = Number of points. The special variables `$fs` and `$fa` are ignored. If set, `$fn` must be 12 or greater, and is rounded to the nearest multiple of 4. Points are generated so they are more dense around sharper curves. Default if not set: 48
// Examples(2D):
// squircle(size=50, squareness=0.4);
// squircle([80,60], 0.7, $fn=64);
// Example(2D): Ten increments of squareness parameter for a superellipse squircle
// for(sq=[0:0.1:1])
// stroke(squircle(100, sq, style="superellipse", $fn=128), closed=true, width=0.5);
// Example(2D): Standard vector anchors are based on the bounding box
// squircle(50, 0.6) show_anchors();
// Example(2D): Perimeter anchors, anchoring at bottom left and spinning 20°
// squircle([60,40], 0.5, anchor=(BOTTOM+LEFT), atype="perim", spin=20)
// show_anchors();

module squircle(size, squareness=0.5, style="fg", atype="box", anchor=CENTER, spin=0) {
check = assert(squareness >= 0 && squareness <= 1);
anchorchk = assert(in_list(atype, ["box", "perim"]));
size = is_num(size) ? [size,size] : point2d(size);
assert(all_positive(size), "All components of size must be positive.");
path = squircle(size, squareness, style, atype="box");
if (atype == "box") {
attachable(anchor, spin, two_d=true, size=size, extent=false) {
polygon(path);
children();
}
} else { // atype=="perim"
attachable(anchor, spin, two_d=true, extent=true, path=path) {
polygon(path);
children();
}
}
}


function squircle(size, squareness=0.5, style="fg", atype="box", anchor=CENTER, spin=0) =
assert(squareness >= 0 && squareness <= 1)
assert(is_num(size) || is_vector(size,2))
assert(in_list(atype, ["box", "perim"]))
let(
size = is_num(size) ? [size,size] : point2d(size),
path = style == "fg" ? _squircle_fg(size, squareness)
: style == "superellipse" ? _squircle_se(size, squareness)
: assert(false, "Style must be \"fg\" or \"superellipse\"")
) reorient(anchor, spin, two_d=true, size=atype=="box"?size:undef, path=atype=="box"?undef:path, p=path, extent=true);


/* FG squircle functions */

function _squircle_fg(size, squareness) = [
let(
sq = _linearize_squareness(squareness),
size = is_num(size) ? [size,size] : point2d(size),
aspect = size[1] / size[0],
r = 0.5 * size[0],
astep = $fn>=12 ? 90/round($fn/4) : 360/48
) for(a=[360:-astep:0.01]) let(
theta = a + sq * sin(4*a) * 30/PI, // tighter angle steps at corners
p = squircle_radius_fg(sq, r, theta)
) p*[cos(theta), aspect*sin(theta)]
];

function squircle_radius_fg(squareness, r, angle) = let(
s2a = abs(squareness*sin(2*angle))
) s2a>0 ? r*sqrt(2)/s2a * sqrt(1 - sqrt(1 - s2a*s2a)) : r;

function _linearize_squareness(s) =
// from Chamberlain Fong (2016). "Squircular Calculations". arXiv.
// https://arxiv.org/pdf/1604.02174v5
let(c = 2 - 2*sqrt(2), d = 1 - 0.5*c*s)
2 * sqrt((1+c)*s*s - c*s) / (d*d);


/* Superellipse squircle functions */

function _squircle_se(size, squareness) = [
let(
n = _squircle_se_exponent(squareness),
size = is_num(size) ? [size,size] : point2d(size),
ra = 0.5*size[0],
rb = 0.5*size[1],
astep = $fn>=12 ? 90/round($fn/4) : 360/48,
fgsq = _linearize_squareness(min(0.998,squareness)) // works well for distributing theta
) for(a=[360:-astep:0.01]) let(
theta = a + fgsq*sin(4*a)*30/PI, // tighter angle steps at corners
x = cos(theta),
y = sin(theta),
r = (abs(x)^n + abs(y)^n)^(1/n) // superellipse
//r = _superformula(theta=theta, m1=4,m2=4,n1=n,n2=n,n3=n,a=1,b=1)
) [ra*x, rb*y] / r
];

function squircle_radius_se(n, r, angle) = let(
x = cos(angle),
y = sin(angle)
) (abs(x)^n + abs(y)^n)^(1/n) / r;

function _squircle_se_exponent(squareness) = let(
// limit squareness; error if >0.99889, limit is smaller for r>1
s=min(0.998,squareness),
rho = 1 + s*(sqrt(2)-1),
x = rho / sqrt(2)
) log(0.5) / log(x);



// Section: Text

// Module: text()
Expand Down
Loading