Skip to content

Commit

Permalink
content-update
Browse files Browse the repository at this point in the history
  • Loading branch information
shreyabhandari0220 committed Dec 6, 2023
1 parent dd01753 commit 6f932f2
Show file tree
Hide file tree
Showing 16 changed files with 301 additions and 0 deletions.
6 changes: 6 additions & 0 deletions src/content-sources/oatutor/bkt-params/bktParams1.json
Original file line number Diff line number Diff line change
Expand Up @@ -833,6 +833,12 @@
"probSlip": 0.1,
"probGuess": 0.1
},
"arc_length_of_the_curve_y_=_f(x)": {
"probMastery": 0.1,
"probTransit": 0.1,
"probSlip": 0.1,
"probGuess": 0.1
},
"mass_and_density": {
"probMastery": 0.1,
"probTransit": 0.1,
Expand Down
6 changes: 6 additions & 0 deletions src/content-sources/oatutor/bkt-params/bktParams2.json
Original file line number Diff line number Diff line change
Expand Up @@ -833,6 +833,12 @@
"probSlip": 0.1,
"probGuess": 0.1
},
"arc_length_of_the_curve_y_=_f(x)": {
"probMastery": 0.1,
"probTransit": 0.1,
"probSlip": 0.1,
"probGuess": 0.1
},
"mass_and_density": {
"probMastery": 0.1,
"probTransit": 0.1,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea1",
"title": "Calculating the Arc Length of a Function $$x$$",
"body": "",
"variabilization": {},
"oer": "https://openstax.org/books/calculus-volume-1/pages/6-4-arc-length-of-a-curve-and-surface-area",
"license": 0.0,
"lesson": "6.4 KB",
"courseName": "Calculus Editor Sheet"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea1a",
"stepAnswer": [
"$$2.268$$"
],
"problemType": "TextBox",
"stepTitle": "Let \ud835\udc53(x) $$=$$ 2*x**{3/2}. Calculate the arc length of the graph of \ud835\udc53(x) over the interval [0,1]. Round the answer to three decimal places.",
"stepBody": "",
"answerType": "arithmetic",
"variabilization": {},
"answerLatex": "$$2.268$$"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
[
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea1a-h1",
"type": "hint",
"dependencies": [],
"title": "Arc length formula",
"text": "Arc Length $$=$$ $$/int{sqrt(1$$ + f'(x)**2), a, $$b$$, x}",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
},
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea1a-h2",
"type": "hint",
"dependencies": [
"a4f79f7ArcLengthofaCurveandSurfaceArea1a-h1"
],
"title": "Take the derivative of f(x) and plug it into the integral with the given bounds",
"text": "Arc Length $$=$$ $$/int{sqrt(1$$ + (3*x**{1/2})**2), $$0$$, $$1$$, x}",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
},
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea1a-h3",
"type": "hint",
"dependencies": [
"a4f79f7ArcLengthofaCurveandSurfaceArea1a-h2"
],
"title": "Simplify $${f{\\left(x\\right)}}^2$$",
"text": "Arc Length $$=$$ $$/int{sqrt(1$$ + 9*x), $$0$$, $$1$$, x}",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
},
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea1a-h4",
"type": "hint",
"dependencies": [
"a4f79f7ArcLengthofaCurveandSurfaceArea1a-h3"
],
"title": "u substitution",
"text": "Perform u substitution with u $$=$$ $$1$$ + $$9x$$",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
},
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea1a-h5",
"type": "hint",
"dependencies": [
"a4f79f7ArcLengthofaCurveandSurfaceArea1a-h4"
],
"title": "Integral after u substitution",
"text": "Arc Length $$=$$ $$\\frac{1}{9}$$ * $$/int{sqrt(u)$$, $$1$$, $$10$$, x}",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
}
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea2",
"title": "Calculating the Arc Length of a Function $$x$$",
"body": "",
"variabilization": {},
"oer": "https://openstax.org/books/calculus-volume-1/pages/6-4-arc-length-of-a-curve-and-surface-area",
"license": 0.0,
"lesson": "6.4 KB",
"courseName": "Calculus Editor Sheet"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea2a",
"stepAnswer": [
"$$1.657$$"
],
"problemType": "TextBox",
"stepTitle": "Let \ud835\udc53(x) $$=$$ (4/3)*x**{3/2}. Calculate the arc length of the graph of \ud835\udc53(x) over the interval [0,1]. Round the answer to three decimal places.",
"stepBody": "",
"answerType": "arithmetic",
"variabilization": {},
"answerLatex": "$$1.657$$"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
[
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea2a-h1",
"type": "hint",
"dependencies": [],
"title": "Arc length formula",
"text": "Arc Length $$=$$ $$/int{sqrt(1$$ + f'(x)**2), a, $$b$$, x}",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
},
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea2a-h2",
"type": "hint",
"dependencies": [
"a4f79f7ArcLengthofaCurveandSurfaceArea2a-h1"
],
"title": "Take the derivative of f(x)",
"text": "f'(x) $$=$$ $$\\frac{4}{3}$$ *(3/2) *x**{1/2} $$=$$ 2*x**{1/2}",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
},
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea2a-h3",
"type": "hint",
"dependencies": [
"a4f79f7ArcLengthofaCurveandSurfaceArea2a-h2"
],
"title": "Plug the derivative into the integral with the given bounds",
"text": "Arc Length $$=$$ $$/int{sqrt(1$$ + (2*x**{1/2})**2), $$0$$, $$1$$, x}",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
},
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea2a-h4",
"type": "hint",
"dependencies": [
"a4f79f7ArcLengthofaCurveandSurfaceArea2a-h3"
],
"title": "Simplify $${f{\\left(x\\right)}}^2$$ and evaluate the integral",
"text": "Arc Length $$=$$ $$/int{sqrt(1$$ + $$4x^2$$, $$0$$, $$1$$, x}",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
}
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea3",
"title": "Using a Computer or Calculator to Determine the Arc Length of a Function of $$x$$. Round to three decimal places.",
"body": "",
"variabilization": {},
"oer": "https://openstax.org/books/calculus-volume-1/pages/6-4-arc-length-of-a-curve-and-surface-area",
"license": 0.0,
"lesson": "6.4 KB",
"courseName": "Calculus Editor Sheet"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea3a",
"stepAnswer": [
"$$8.269$$"
],
"problemType": "TextBox",
"stepTitle": "Let \ud835\udc53(x) $$=$$ $$x^2$$ Calculate the arc length of the graph of \ud835\udc53(x) over the interval [1,3].",
"stepBody": "",
"answerType": "arithmetic",
"variabilization": {},
"answerLatex": "$$8.269$$"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
[
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea3a-h1",
"type": "hint",
"dependencies": [],
"title": "Take the derivative of f(x) and plug it into the integral with the given bounds",
"text": "Arc Length $$=$$ $$/int{sqrt(1$$ + (2*x)**2), $$1$$, $$3$$, x}",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
},
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea3a-h2",
"type": "hint",
"dependencies": [
"a4f79f7ArcLengthofaCurveandSurfaceArea3a-h1"
],
"title": "Simplify $${f{\\left(x\\right)}}^2$$",
"text": "Arc Length $$=$$ $$/int{sqrt(1$$ + 4*x**2), $$1$$, $$3$$, x}",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
},
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea3a-h3",
"type": "hint",
"dependencies": [
"a4f79f7ArcLengthofaCurveandSurfaceArea3a-h2"
],
"title": "Use a computer, calculator, or another device to solve the integral.",
"text": "",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
}
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea4",
"title": "Using a Computer or Calculator to Determine the Arc Length of a Function of $$x$$. Round to three decimal places.",
"body": "",
"variabilization": {},
"oer": "https://openstax.org/books/calculus-volume-1/pages/6-4-arc-length-of-a-curve-and-surface-area",
"license": 0.0,
"lesson": "6.4 KB",
"courseName": "Calculus Editor Sheet"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea4a",
"stepAnswer": [
"$$3.819$$"
],
"problemType": "TextBox",
"stepTitle": "Let \ud835\udc53(x) $$=$$ sin(x) Calculate the arc length of the graph of \ud835\udc53(x) over the interval [0,/pi].",
"stepBody": "",
"answerType": "arithmetic",
"variabilization": {},
"answerLatex": "$$3.819$$"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
[
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea4a-h1",
"type": "hint",
"dependencies": [],
"title": "Take the derivative of f(x)",
"text": "f'(x) $$=$$ cos(x)",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
},
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea4a-h2",
"type": "hint",
"dependencies": [
"a4f79f7ArcLengthofaCurveandSurfaceArea4a-h1"
],
"title": "Plug the f'(x) into the arc length formula with the given bounds.",
"text": "Arc Length $$=$$ $$/int{sqrt(1$$ + (cos(x))**2), $$0$$, /pi, x}",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
},
{
"id": "a4f79f7ArcLengthofaCurveandSurfaceArea4a-h3",
"type": "hint",
"dependencies": [
"a4f79f7ArcLengthofaCurveandSurfaceArea4a-h2"
],
"title": "Use a computer, calculator, or another device to solve the integral.",
"text": "",
"variabilization": {},
"oer": "https://OATutor.io <OATutor>",
"license": ""
}
]
9 changes: 9 additions & 0 deletions src/content-sources/oatutor/coursePlans.json
Original file line number Diff line number Diff line change
Expand Up @@ -858,6 +858,15 @@
"which_method_should_we_use?": 0.85
}
},
{
"id": "4e59xOCF-l2J4-XxwNfoNmCu",
"name": "Lesson 6.4",
"topics": "KB",
"allowRecycle": true,
"learningObjectives": {
"arc_length_of_the_curve_y_=_f(x)": 0.85
}
},
{
"id": "1XPjBaWn-h3jJ-F9wMgBwB6x",
"name": "Lesson 6.5",
Expand Down
12 changes: 12 additions & 0 deletions src/content-sources/oatutor/skillModel.json
Original file line number Diff line number Diff line change
Expand Up @@ -5404,6 +5404,18 @@
"a184cfaVolumesofRevolution:CylindricalShells9a": [
"section_6.3_exercises"
],
"a4f79f7ArcLengthofaCurveandSurfaceArea1a": [
"arc_length_of_the_curve_y_=_f(x)"
],
"a4f79f7ArcLengthofaCurveandSurfaceArea2a": [
"arc_length_of_the_curve_y_=_f(x)"
],
"a4f79f7ArcLengthofaCurveandSurfaceArea3a": [
"arc_length_of_the_curve_y_=_f(x)"
],
"a4f79f7ArcLengthofaCurveandSurfaceArea4a": [
"arc_length_of_the_curve_y_=_f(x)"
],
"aae9fdfPhysicalApplications1a": [
"mass_and_density"
],
Expand Down

0 comments on commit 6f932f2

Please sign in to comment.