This code is based on mmsegmentation
-
python == 3.8
-
Pytorch == 1.9.0
-
timm
-
imgviz
conda create --name mmseg-v1rc python=3.8 -y
conda activate mmseg-v1rc
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=10.2 -c pytorch -y
pip install -U openmim
mim install "mmengine==0.3.2"
mim install "mmcv==2.0.0rc3"
git clone https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
git checkout -b 1rc2 v1.0.0rc2
pip install -v -e . -i https://pypi.douban.com/simple/
mim install "mmdet==3.0.0rc4"
mim install "mmcls==1.0.0rc4"
pip install imgviz
pip install timm
pip install kornia==0.5.8
Note that replacing mmengine, mmcv and mmdet in the environment directory lib/python3.8/site-packages with the given packages.
Please see PSSNet/prepare_dataset
bash mmsegmentation/tools/dist_train.sh mmsegmentation/configs/_mask2former_/mask2former_swin-t_4xb2-40k_multi_dataset-512x512_90query_6layer_mean_teacher_query_mask_random_shift_learn_generate_query_mask_feature_pseudo_factor.py 4
python mmsegmentation/tools/vis.py images_path ann_path 7 config_file_path checkpoint_path
We provide the final model and training logs here
If you find it useful for your your research and applications, please cite using this BibTeX:
@inproceedings{zeng2024task,
title={Task-Aware Transformer For Partially Supervised Retinal Fundus Image Segmentation},
author={Zeng, Hailong and Liu, Jianfeng and Liang, Yixiong},
booktitle={2024 International Joint Conference on Neural Networks (IJCNN)},
pages={1--8},
year={2024},
organization={IEEE}
}