Skip to content

CZ-TAO12/RAGTrans

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Retrieval-Augmented Hypergraph for Multimodal Social Media Popularity Prediction

A PyTorch implementation of our RAGTrans

Dependencies

Install the dependencies via Anaconda:

  • Python (>=3.8)
  • PyTorch (>=1.8.1)
  • NumPy (>=1.17.4)
  • Scipy (>=1.7.3)
  • torch-geometric(>=2.0.4)
  • tqdm(>=4.62.2)
  • sentence_transformers
  • towhee
  • json

Dataset

Three datasets (i.e., SMPD, ICIP, WeChat) can be downloaded from official website address.

create virtual environment:

conda create --name RAGTrans python=3.9

activate environment:

conda activate RAGTrans

install pytorh from pytorch:

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=10.2 -c pytorch

To install all dependencies:

pip install -r requirements.txt

Usage

Here we provide the implementation of Seaformer along with SMPD dataset.

  • To train and evaluate on WEIXIN:
python run.py -data_name=WEIXIN

More running options are described in the codes, e.g., -data_name= WEIXIN

Folder Structure

RAGTrans

└── models: # The file includes each part of the modules in Seaformer.
    ├── HGAT.py # The core source code of BHT.
    ├── mmmodels.py # The core source code of Seaformer.
    ├── TransformerBlock.py # The core source code of multi-head attention.

└── utils: # The file includes each part of basic modules (e.g., metrics, earlystopping).
    ├── EarlyStopping.py  # The core code of the early stopping operation.
    ├── img_text_embedding.py # The core source code of visual (textual) feature extraction
    ├── parsers.py        # The core source code of parameter settings. 
└── dataLoader.py:     # Data loading.
└── run.py:            # Run the model.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages