generated from microsoft/python-package-template
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
78 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
# --------------------------------------------------------------------------------- | ||
# Copyright (c) University of Michigan 2020-2024. All rights reserved. | ||
# Licensed under the MIT License. See LICENSE in project root for information. | ||
# --------------------------------------------------------------------------------- | ||
|
||
import zipfile | ||
import zstd | ||
import tqdm | ||
import concurrent | ||
|
||
import numpy as np | ||
from numba import njit | ||
|
||
def load_from_zip( | ||
file_name, | ||
stack_size=2000, | ||
stack_select=None, | ||
thread_count=1, | ||
chunk_batch=1, | ||
correction_image=None, | ||
shift=None, | ||
): | ||
zf = zipfile.ZipFile(file_name, mode="r") | ||
|
||
file_list = list(zf.namelist()) | ||
file_list.sort(key=lambda x: int(x.split("_")[1])) | ||
|
||
if stack_select is not None: | ||
file_list = file_list[stack_select] | ||
|
||
out = bytearray() | ||
n = 0 | ||
|
||
with concurrent.futures.ThreadPoolExecutor(max_workers=thread_count) as executor: | ||
for r in tqdm.tqdm( | ||
executor.map(lambda x: zstd.ZSTD_uncompress(zf.read(x)), file_list), | ||
total=len(file_list), | ||
): | ||
out += r | ||
n += 1 | ||
zf.close() | ||
|
||
while n < stack_size: | ||
n += 1 | ||
out += b'0' * (2 * 2304 * 2304) | ||
|
||
outnp = np.frombuffer(out, dtype=np.uint16) | ||
outnp = outnp.reshape(stack_size, 2304, 2304) | ||
|
||
if correction_image is not None: | ||
for i in range(stack_size): | ||
np.multiply( | ||
outnp[i, ...], correction_image, out=outnp[i, ...], casting="unsafe" | ||
) | ||
|
||
outnp = np.moveaxis(outnp, 0, -1) | ||
|
||
return outnp | ||
|
||
@njit | ||
def downsample(in_array, out_array): | ||
for i, j in zip(in_array.shape, out_array.shape): | ||
if i // 2 != j: | ||
raise ValueError(f"Invalid casting ({i}/2) != ({j})") | ||
|
||
for i in range(out_array.shape[0]): | ||
for j in range(out_array.shape[1]): | ||
for k in range(out_array.shape[2]): | ||
total: float = 0.0 | ||
n: int = 0 | ||
|
||
for ii in range(2): | ||
for jj in range(2): | ||
for kk in range(2): | ||
total += in_array[(i * 2) + ii, (j * 2) + jj, (k * 2) + kk] | ||
n += 1 | ||
|
||
out_array[i, j, k] = int(total / n) |