Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create Prims.java #258

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
105 changes: 105 additions & 0 deletions Graphs/Pims.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
import java.util.*;
import java.lang.*;
import java.io.*;

class MST {
// Number of vertices in the graph
private static final int V = 5;

// A utility function to find the vertex with minimum key
// value, from the set of vertices not yet included in MST
int minKey(int key[], Boolean mstSet[])
{
// Initialize min value
int min = Integer.MAX_VALUE, min_index = -1;

for (int v = 0; v < V; v++)
if (mstSet[v] == false && key[v] < min) {
min = key[v];
min_index = v;
}

return min_index;
}

// A utility function to print the constructed MST stored in
// parent[]
void printMST(int parent[], int graph[][])
{
System.out.println("Edge \tWeight");
for (int i = 1; i < V; i++)
System.out.println(parent[i] + " - " + i + "\t" + graph[i][parent[i]]);
}

// Function to construct and print MST for a graph represented
// using adjacency matrix representation
void primMST(int graph[][])
{
// Array to store constructed MST
int parent[] = new int[V];

// Key values used to pick minimum weight edge in cut
int key[] = new int[V];

// To represent set of vertices not yet included in MST
Boolean mstSet[] = new Boolean[V];

// Initialize all keys as INFINITE
for (int i = 0; i < V; i++) {
key[i] = Integer.MAX_VALUE;
mstSet[i] = false;
}

// Always include first 1st vertex in MST.
key[0] = 0; // Make key 0 so that this vertex is
// picked as first vertex
parent[0] = -1; // First node is always root of MST

// The MST will have V vertices
for (int count = 0; count < V - 1; count++) {
// Pick thd minimum key vertex from the set of vertices
// not yet included in MST
int u = minKey(key, mstSet);

// Add the picked vertex to the MST Set
mstSet[u] = true;

// Update key value and parent index of the adjacent
// vertices of the picked vertex. Consider only those
// vertices which are not yet included in MST
for (int v = 0; v < V; v++)

// graph[u][v] is non zero only for adjacent vertices of m
// mstSet[v] is false for vertices not yet included in MST
// Update the key only if graph[u][v] is smaller than key[v]
if (graph[u][v] != 0 && mstSet[v] == false && graph[u][v] < key[v]) {
parent[v] = u;
key[v] = graph[u][v];
}
}

// print the constructed MST
printMST(parent, graph);
}

public static void main(String[] args)
{
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
MST t = new MST();
int graph[][] = new int[][] { { 0, 2, 0, 6, 0 },
{ 2, 0, 3, 8, 5 },
{ 0, 3, 0, 0, 7 },
{ 6, 8, 0, 0, 9 },
{ 0, 5, 7, 9, 0 } };

// Print the solution
t.primMST(graph);
}
}