- Create the data directories
mkdir data; mkdir data/raw; mkdir data/converted;
- Place videos inside 'data/raw' directory
- Run the conversion script
For all videos inside 'data/raw' directory
python3 converter.py
For one specific video 'filename'
python3 converter.py --inputname filename
To convert all videos in the data/raw folder to a consistent fps and resolution:
python3 converter.py --fps 30 --out_dim 640 360
Download and unzip the dataset
wget http://data.csail.mit.edu/soundnet/actions3/split1/Moments_in_Time_Mini.zip
unzip Moments_in_Time_Mini.zip -d data/.
Pre-process the dataset
./convert_moment_dataset.sh
Go into the folder "Deep-Learning-Colorization"
Run ./models/fetch_release_models.sh
to download the model.
Then run the following command to colorize your video :
python3 video_colorize_parallel.py --filename <BW_video_filename> --input_dir <path_to_input_directory> --output_dir <path_to_output_directory>
You can install Python dependencies using pip install -r requirements.txt
When running import tensorflow as tf
, if you encounter the following error:
ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory
Run the following to create links:
sudo ln -s /usr/lib/x86_64-linux-gnu/libcublas.so.9.1.85 /usr/lib/x86_64-linux-gnu/libcublas.so.9.0
sudo ln -s /usr/lib/x86_64-linux-gnu/libcusolver.so.9.1.85 /usr/lib/x86_64-linux-gnu/libcusolver.so.9.0