Skip to content

Commit

Permalink
Merge pull request jjhelmus#216 from kaustubhmote/peakpick-testing
Browse files Browse the repository at this point in the history
Bugfix: Peak-picking and testing all algorithms
  • Loading branch information
kaustubhmote authored Feb 7, 2024
2 parents f17caaf + 92f4193 commit e5007e7
Show file tree
Hide file tree
Showing 2 changed files with 247 additions and 2 deletions.
4 changes: 2 additions & 2 deletions nmrglue/analysis/peakpick.py
Original file line number Diff line number Diff line change
Expand Up @@ -535,7 +535,7 @@ def find_pseg_slice(data, location, thres):
stop = stop + 1
al[dim] = stop
seg_slice.append(slice(start + 1, stop))
return seg_slice
return tuple(seg_slice)


def find_nseg_slice(data, location, thres):
Expand All @@ -558,4 +558,4 @@ def find_nseg_slice(data, location, thres):
stop = stop + 1
al[dim] = stop
seg_slice.append(slice(start + 1, stop))
return seg_slice
return tuple(seg_slice)
245 changes: 245 additions & 0 deletions tests/test_peakpick.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,245 @@
import nmrglue as ng
import numpy as np
import pytest


_ONE_D_PEAKS = {
"shape": (1024,),
"positions": [100, 200, 300, 400, 500],
"lws": [10, 20, 10, 20, 10],
"amps": [100, 200, 300, 300, 150],
"vparams": [0.2, 0.4, 0.2, 0.5, 1.0],
}

_TWO_D_PEAKS = {
"shape": (512, 128),
"positions": [(100, 100), (200, 53), (300, 110), (400, 75)],
"lws": [(10, 5), (20, 5), (10, 5), (20, 5)],
"amps": [100, 200, 300, 300],
"vparams": [(0.2, 0.2), (0.4, 0.4), (0.2, 0.2), (0.5, 0.4)],
}


_THREE_D_PEAKS = {
"shape": (256, 64, 64),
"positions": [(150, 24, 22), (200, 10, 50), (210, 50, 10), (77, 30, 15)],
"lws": [(5, 5, 5), (3, 8, 5), (7, 5, 5), (7, 6, 5)],
"amps": [100, 200, 300, 300],
"vparams": [(0.2, 0.2, 0.3), (0.5, 0.4, 0.4), (0.1, 0.2, 0.2), (0.3, 0.5, 0.4)],
}


def _generate_1d_data(shape, positions, lws, amps, vparams):
"""
Generates a test 1d dataset with multiple peaks
Parameters
----------
shape : Iterable[int]
shape of the numpy array to be created
positions : Iterable[int]
a list of the positions of the peaks
lws : Iterable[float|int]
a list of linewidths for each peak
amps : Iterable[float|int]
a list of amplitudes for each peak
vparams : Iterable[float|int]
a list of list containing the eta parameter
for the pseudo voigt lineshape
Returns
-------
numpy.ndarray
simulated one-d dataset
"""
data = ng.linesh.sim_NDregion(
shape=shape,
lineshapes=["pv"],
params=[[(pos, lws, vp)] for pos, lws, vp in zip(positions, lws, vparams)],
amps=amps,
)
return data


def _generate_2d_data(dataset):
"""
Generates a test 2d dataset with multiple peaks
Parameters
----------
shape : Iterable[Iterable[int, int]]
shape of the numpy array to be created
positions : Iterable[Iterable[int, int]]
a list of list of two positions for each peak
lws : Iterable[Iterable[float, float]]
a list of list of two linewidths for each peak
amps : Iterable[Iterable[float, float]]
a list of list of two amplitudes for each peak
vparams : Iterable[Iterable[float, float]]
a list of list containing 2 values for the
eta parameter for the pseud-voigt lineshape
Returns
-------
numpy.ndarray
simulated two-d dataset
"""
params = []
for i in range(len(dataset["positions"])):
d = [[], []]
for j in range(2):
d[j] = (
dataset["positions"][i][j],
dataset["lws"][i][j],
dataset["vparams"][i][j],
)

params.append(d)

data = ng.linesh.sim_NDregion(
shape=(512, 128), lineshapes=["pv", "pv"], params=params, amps=dataset["amps"]
)

return data


def _generate_3d_data(dataset):
"""
Generates a test 3d dataset with multiple peaks
Parameters
----------
shape : Iterable[Iterable[int, int, int]]
shape of the numpy array to be created
positions : Iterable[Iterable[int, int, int]]
a list of list of three positions for each peak
lws : Iterable[Iterable[float, float, float]]
a list of list of three linewidths for each peak
amps : Iterable[Iterable[float, float, float]]
a list of list of three amplitudes for each peak
vparams : Iterable[Iterable[float, float, float]]
a list of list containing three values for the
eta parameter for the pseud-voigt lineshape
Returns
-------
numpy.ndarray
simulated three-d dataset
"""
params = []
for i in range(len(dataset["positions"])):
d = [[], [], []]
for j in range(3):
d[j] = (
dataset["positions"][i][j],
dataset["lws"][i][j],
dataset["vparams"][i][j],
)

params.append(d)

data = ng.linesh.sim_NDregion(
shape=(256, 64, 64),
lineshapes=["pv", "pv", "pv"],
params=params,
amps=dataset["amps"],
)

return data


def _test_1d(dataset, algorithm, msep=None, rtol=1):
"""test 1d peak picking"""

data = _generate_1d_data(**dataset)
peaks = ng.peakpick.pick(data, pthres=50, algorithm=algorithm, msep=msep)
assert np.allclose(peaks.X_AXIS, dataset["positions"], rtol=1)


def _test_2d(dataset, algorithm, msep=None, rtol=1):
"""test 2d peak picking"""

data = _generate_2d_data(dataset)
peaks = ng.peakpick.pick(data, pthres=50, algorithm=algorithm, msep=msep)
assert np.allclose(peaks.X_AXIS, [i[1] for i in dataset["positions"]], rtol=1)
assert np.allclose(peaks.Y_AXIS, [i[0] for i in dataset["positions"]], rtol=1)


def _test_3d(dataset, algorithm, msep=None, rtol=1):
"""test 3d peak picking"""

data = _generate_3d_data(dataset)
peaks = ng.peakpick.pick(data, pthres=50, algorithm=algorithm, msep=msep)

assert np.allclose(
sorted(peaks.X_AXIS), sorted([i[2] for i in dataset["positions"]]), rtol=rtol
)
assert np.allclose(
sorted(peaks.Y_AXIS), sorted([i[1] for i in dataset["positions"]]), rtol=rtol
)
assert np.allclose(
sorted(peaks.Z_AXIS), sorted([i[0] for i in dataset["positions"]]), rtol=rtol
)


@pytest.mark.fast
def test_1d_connected():
_test_1d(dataset=_ONE_D_PEAKS, algorithm="connected")


@pytest.mark.fast
def test_1d_downward():
_test_1d(dataset=_ONE_D_PEAKS, algorithm="downward")


@pytest.mark.fast
def test_1d_thres():
_test_1d(dataset=_ONE_D_PEAKS, algorithm="thres", msep=(5,))


@pytest.mark.fast
def test_1d_thres_fast():
_test_1d(dataset=_ONE_D_PEAKS, algorithm="thres-fast", msep=(5,))


@pytest.mark.fast
def test_2d_connected():
_test_2d(dataset=_TWO_D_PEAKS, algorithm="connected")


@pytest.mark.fast
def test_2d_downward():
_test_2d(dataset=_TWO_D_PEAKS, algorithm="downward")


@pytest.mark.fast
def test_2d_thres():
_test_2d(dataset=_TWO_D_PEAKS, algorithm="thres", msep=(5, 5))


@pytest.mark.fast
def test_2d_thres_fast():
_test_2d(dataset=_TWO_D_PEAKS, algorithm="thres-fast", msep=(5, 5))


@pytest.mark.fast
def test_3d_connected():
_test_3d(dataset=_THREE_D_PEAKS, algorithm="connected")


@pytest.mark.fast
def test_3d_downward():
_test_3d(dataset=_THREE_D_PEAKS, algorithm="downward")


@pytest.mark.fast
def test_3d_thres():
_test_3d(dataset=_THREE_D_PEAKS, algorithm="thres", msep=(2, 2, 2))


@pytest.mark.fast
def test_3d_thres_fast():
_test_3d(dataset=_THREE_D_PEAKS, algorithm="thres-fast", msep=(2, 2, 2))

0 comments on commit e5007e7

Please sign in to comment.