Skip to content

Commit

Permalink
Merge pull request #673 from DHI/layered
Browse files Browse the repository at this point in the history
Misc improvement for layered dfsu
  • Loading branch information
ecomodeller authored Mar 17, 2024
2 parents c31fc27 + ae46519 commit 38b5acd
Show file tree
Hide file tree
Showing 5 changed files with 144 additions and 205 deletions.
78 changes: 27 additions & 51 deletions mikeio/dfsu/_layered.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,6 @@
from __future__ import annotations
from pathlib import Path
from typing import Any, Collection
from functools import wraps
import warnings
from typing import Any, Collection, Sequence, Tuple

import numpy as np
from mikecore.DfsuFile import DfsuFile, DfsuFileType
Expand Down Expand Up @@ -92,18 +90,18 @@ def n_z_layers(self):
def read(
self,
*,
items=None,
time=None,
items: str | int | Sequence[str | int] | None = None,
time: int | str | slice | None = None,
elements: Collection[int] | None = None,
area=None,
x=None,
y=None,
z=None,
layers=None,
keepdims=False,
dtype=np.float32,
error_bad_data=True,
fill_bad_data_value=np.nan,
area: Tuple[float, float, float, float] | None = None,
x: float | None = None,
y: float | None = None,
z: float | None = None,
layers: int | str | Sequence[int] | None = None,
keepdims: bool = False,
dtype: Any = np.float32,
error_bad_data: bool = True,
fill_bad_data_value: float = np.nan,
) -> Dataset:
"""
Read data from a dfsu file
Expand All @@ -121,9 +119,12 @@ def read(
Read only data inside (horizontal) area given as a
bounding box (tuple with left, lower, right, upper)
or as list of coordinates for a polygon, by default None
x, y, z: float, optional
Read only data for elements containing the (x,y,z) points(s),
by default None
x: float, optional
Read only data for elements containing the (x,y,z) points(s)
y: float, optional
Read only data for elements containing the (x,y,z) points(s)
z: float, optional
Read only data for elements containing the (x,y,z) points(s)
layers: int, str, list[int], optional
Read only data for specific layers, by default None
elements: list[int], optional
Expand All @@ -142,13 +143,7 @@ def read(
if dtype not in [np.float32, np.float64]:
raise ValueError("Invalid data type. Choose np.float32 or np.float64")

# Open the dfs file for reading
# self._read_dfsu_header(self._filename)
dfs = DfsuFile.Open(self._filename)
# time may have changes since we read the header
# (if engine is continuously writing to this file)
# TODO: add more checks that this is actually still the same file
# (could have been replaced in the meantime)

single_time_selected, time_steps = _valid_timesteps(dfs, time)

Expand All @@ -166,19 +161,16 @@ def read(
elements = list(elements)
n_elems = len(elements)
geometry = self.geometry.elements_to_geometry(elements)
if self.is_layered: # and items[0].name == "Z coordinate":
node_ids, _ = self.geometry._get_nodes_and_table_for_elements(elements)
n_nodes = len(node_ids)
node_ids, _ = self.geometry._get_nodes_and_table_for_elements(elements)
n_nodes = len(node_ids)

item_numbers = _valid_item_numbers(
dfs.ItemInfo, items, ignore_first=self.is_layered
)
items = _get_item_info(dfs.ItemInfo, item_numbers, ignore_first=self.is_layered)
if self.is_layered:
# we need the zn item too
item_numbers = [it + 1 for it in item_numbers]
if hasattr(geometry, "is_layered") and geometry.is_layered:
item_numbers.insert(0, 0)
item_numbers = [it + 1 for it in item_numbers]
if layered_data := hasattr(geometry, "is_layered") and geometry.is_layered:
item_numbers.insert(0, 0)
n_items = len(item_numbers)

deletevalue = self.deletevalue
Expand All @@ -188,9 +180,7 @@ def read(
n_steps = len(time_steps)
item0_is_node_based = False
for item in range(n_items):
# Initialize an empty data block
if hasattr(geometry, "is_layered") and geometry.is_layered and item == 0:
# and items[item].name == "Z coordinate":
if layered_data and item == 0:
item0_is_node_based = True
data: np.ndarray = np.ndarray(shape=(n_steps, n_nodes), dtype=dtype)
else:
Expand Down Expand Up @@ -244,7 +234,7 @@ def read(
dims = tuple([d for d in dims if d != "element"])
data_list = [np.squeeze(d, axis=-1) for d in data_list]

if hasattr(geometry, "is_layered") and geometry.is_layered:
if layered_data:
return Dataset(
data_list[1:], # skip zn item
time,
Expand All @@ -260,27 +250,18 @@ def read(
)

def _parse_geometry_sel(self, area, layers, x, y, z):
elements = None

if (
(x is not None)
or (y is not None)
or (area is not None)
or (layers is not None)
):
elements = self.geometry.find_index(x=x, y=y, z=z, area=area, layers=layers)

if (
(x is not None)
or (y is not None)
or (layers is not None)
or (area is not None)
):
# selection was attempted
if (elements is None) or len(elements) == 0:
raise ValueError("No elements in selection!")
return elements

return elements
return None


class Dfsu2DV(DfsuLayered):
Expand Down Expand Up @@ -335,11 +316,6 @@ def plot_vertical_profile(


class Dfsu3D(DfsuLayered):
@wraps(GeometryFM3D.to_2d_geometry)
def to_2d_geometry(self):
warnings.warn("Deprecated. Use geometry2d instead", FutureWarning)
return self.geometry.geometry2d

@property
def geometry2d(self):
"""The 2d geometry for a 3d object"""
Expand Down
4 changes: 0 additions & 4 deletions mikeio/spatial/FM_geometry.py

This file was deleted.

65 changes: 32 additions & 33 deletions mikeio/spatial/_FM_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -261,6 +261,38 @@ def __init__(
if reindex:
self._reindex()

def _calc_element_coordinates(self, maxnodes: int = 4) -> np.ndarray:
element_table = self.element_table

n_elements = len(element_table)
ec = np.empty([n_elements, 3])

# pre-allocate for speed
idx = np.zeros(maxnodes, dtype=int)
xcoords = np.zeros([maxnodes, n_elements])
ycoords = np.zeros([maxnodes, n_elements])
zcoords = np.zeros([maxnodes, n_elements])
nnodes_per_elem = np.zeros(n_elements)

for j in range(n_elements):
nodes = element_table[j]
nnodes = len(nodes)
nnodes_per_elem[j] = nnodes
for i in range(nnodes):
idx[i] = nodes[i] # - 1

x, y, z = self.node_coordinates[idx[:nnodes]].T

xcoords[:nnodes, j] = x
ycoords[:nnodes, j] = y
zcoords[:nnodes, j] = z

ec[:, 0] = np.sum(xcoords, axis=0) / nnodes_per_elem
ec[:, 1] = np.sum(ycoords, axis=0) / nnodes_per_elem
ec[:, 2] = np.sum(zcoords, axis=0) / nnodes_per_elem

return ec

def _check_elements(
self,
element_table: np.ndarray | List[Sequence[int]] | List[np.ndarray],
Expand Down Expand Up @@ -463,39 +495,6 @@ def _tree2d(self) -> cKDTree:
xy = self.element_coordinates[:, :2]
return cKDTree(xy)

def _calc_element_coordinates(self) -> np.ndarray:
element_table = self.element_table

n_elements = len(element_table)
ec = np.empty([n_elements, 3])

# pre-allocate for speed
maxnodes = 4
idx = np.zeros(maxnodes, dtype=int)
xcoords = np.zeros([maxnodes, n_elements])
ycoords = np.zeros([maxnodes, n_elements])
zcoords = np.zeros([maxnodes, n_elements])
nnodes_per_elem = np.zeros(n_elements)

for j in range(n_elements):
nodes = element_table[j]
nnodes = len(nodes)
nnodes_per_elem[j] = nnodes
for i in range(nnodes):
idx[i] = nodes[i] # - 1

x, y, z = self.node_coordinates[idx[:nnodes]].T

xcoords[:nnodes, j] = x
ycoords[:nnodes, j] = y
zcoords[:nnodes, j] = z

ec[:, 0] = np.sum(xcoords, axis=0) / nnodes_per_elem
ec[:, 1] = np.sum(ycoords, axis=0) / nnodes_per_elem
ec[:, 2] = np.sum(zcoords, axis=0) / nnodes_per_elem

return ec

def find_nearest_elements(
self,
x: float | np.ndarray,
Expand Down
Loading

0 comments on commit 38b5acd

Please sign in to comment.