Skip to content

Educational basic MLP example codes with Scikit-learn and Tf.keras

Notifications You must be signed in to change notification settings

DJ4seasons/Python_ML_Basic4beginner

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python_ML_Basic4beginner

Python code examples for beginning Machine Learning(ML)

Assume having basic knowledge of Numpy and Matplotlib

  1. Multi-Layer Perceptron(MLP; Feed-Forward Neural Network) with Scikit-Learn (MLPClassifier)

1.1. Testing scaler and label encoding

1.2. Testing hyperparameter tuning with gridsearchCV

1.3. An idea of ensemble method

1.4. Saving and Loading model settings

  1. MLP with Tensorflow+Keras
  2. Convolution Neural Network(CNN) with Tensorflow+Keras

Data

  1. NOAA climate data record(CDR) Outgoing Longwave Radiation(OLR)

Monthly 1979-2019, 2.5deg X 2.5deg, DOI: 10.7289/V5W37TKD, from https://www.ncdc.noaa.gov/cdr/atmospheric/outgoing-longwave-radiation-monthly

  1. Nino3.4 index Monthly, from https://psl.noaa.gov/data/correlation/nina34.data

Problem

Forecast [El Nino / Neutral / La Nina] (based on Nino3.4 index) with OLR data by 3-month

Modules/Packages needed (Check_python_module_py3.py)

import sys

import os.path

import numpy

import netCDF4

import math

import datetime

import matplotlib.pyplot

import scipy

import sklearn

import pickle

import joblib

import tensorflow.keras

About

Educational basic MLP example codes with Scikit-learn and Tf.keras

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages