Integrates H3 with GeoPandas and Pandas.
⬢ Try it out ⬢
pip install h3pandas
conda install -c conda-forge h3pandas
h3pandas
automatically applies H3 functions to both Pandas Dataframes and GeoPandas Geodataframes
# Prepare data
>>> import pandas as pd
>>> import h3pandas
>>> df = pd.DataFrame({'lat': [50, 51], 'lng': [14, 15]})
>>> resolution = 10
>>> df = df.h3.geo_to_h3(resolution)
>>> df
| h3_10 | lat | lng |
|:----------------|------:|------:|
| 8a1e30973807fff | 50 | 14 |
| 8a1e2659c2c7fff | 51 | 15 |
>>> df = df.h3.h3_to_geo_boundary()
>>> df
| h3_10 | lat | lng | geometry |
|:----------------|------:|------:|:----------------|
| 8a1e30973807fff | 50 | 14 | POLYGON ((...)) |
| 8a1e2659c2c7fff | 51 | 15 | POLYGON ((...)) |
h3pandas
also provides some extended functionality out-of-the-box,
often simplifying common workflows into a single command.
# Set up data
>>> import numpy as np
>>> import pandas as pd
>>> np.random.seed(1729)
>>> df = pd.DataFrame({
>>> 'lat': np.random.uniform(50, 51, 100),
>>> 'lng': np.random.uniform(14, 15, 100),
>>> 'value': np.random.poisson(100, 100)})
>>> })
# Aggregate values by their location and sum
>>> df = df.h3.geo_to_h3_aggregate(3)
>>> df
| h3_03 | value | geometry |
|:----------------|--------:|:----------------|
| 831e30fffffffff | 102 | POLYGON ((...)) |
| 831e34fffffffff | 189 | POLYGON ((...)) |
| 831e35fffffffff | 8744 | POLYGON ((...)) |
| 831f1bfffffffff | 1040 | POLYGON ((...)) |
# Aggregate to a lower H3 resolution
>>> df.h3.h3_to_parent_aggregate(2)
| h3_02 | value | geometry |
|:----------------|--------:|:----------------|
| 821e37fffffffff | 9035 | POLYGON ((...)) |
| 821f1ffffffffff | 1040 | POLYGON ((...)) |
For more examples, see the example notebooks.
For a full API documentation and more usage examples, see the documentation.
H3-Pandas cover the basics of the H3 API, but there are still many possible improvements.
Any suggestions and contributions are very welcome!
In particular, the next steps are:
- Improvements & stability of the "Extended API", e.g.
k_ring_smoothing
.
Additional possible directions
- Allow for alternate h3-py APIs such as memview_int
- Performance improvements through Cythonized h3-py
- Dask integration through dask-geopandas (experimental as of now)
See issues for more.