-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
341 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,341 @@ | ||
(* ========================================================================= *) | ||
(* Basic equality reasoning including conversionals. *) | ||
(* *) | ||
(* John Harrison, University of Cambridge Computer Laboratory *) | ||
(* *) | ||
(* (c) Copyright, University of Cambridge 1998 *) | ||
(* (c) Copyright, John Harrison 1998-2007 *) | ||
(* ========================================================================= *) | ||
|
||
needs "printer.ml";; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* Type abbreviation for conversions. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
type conv = term->thm;; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* A bit more syntax. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let lhand = rand o rator;; | ||
|
||
let lhs = fst o dest_eq;; | ||
|
||
let rhs = snd o dest_eq;; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* Similar to variant, but even avoids constants, and ignores types. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let mk_primed_var = | ||
let rec svariant avoid s = | ||
if mem s avoid || (can get_const_type s && not(is_hidden s)) then | ||
svariant avoid (s^"'") | ||
else s in | ||
fun avoid v -> | ||
let s,ty = dest_var v in | ||
let s' = svariant (mapfilter (fst o dest_var) avoid) s in | ||
mk_var(s',ty);; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* General case of beta-conversion. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let BETA_CONV tm = | ||
try BETA tm with Failure _ -> | ||
try let f,arg = dest_comb tm in | ||
let v = bndvar f in | ||
INST [arg,v] (BETA (mk_comb(f,v))) | ||
with Failure _ -> failwith "BETA_CONV: Not a beta-redex";; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* A few very basic derived equality rules. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let AP_TERM tm = | ||
let rth = REFL tm in | ||
fun th -> try MK_COMB(rth,th) | ||
with Failure _ -> failwith "AP_TERM";; | ||
|
||
let AP_THM th tm = | ||
try MK_COMB(th,REFL tm) | ||
with Failure _ -> failwith "AP_THM";; | ||
|
||
let SYM th = | ||
let tm = concl th in | ||
let l,r = dest_eq tm in | ||
let lth = REFL l in | ||
EQ_MP (MK_COMB(AP_TERM (rator (rator tm)) th,lth)) lth;; | ||
(*Q0 | ||
let ALPHA tm1 tm2 = | ||
try TRANS (REFL tm1) (REFL tm2) | ||
with Failure _ -> failwith "ALPHA";; | ||
Q0*) | ||
let ALPHA_CONV v tm = | ||
let res = alpha v tm in | ||
ALPHA tm res;; | ||
|
||
let GEN_ALPHA_CONV v tm = | ||
if is_abs tm then ALPHA_CONV v tm else | ||
let b,abs = dest_comb tm in | ||
AP_TERM b (ALPHA_CONV v abs);; | ||
|
||
let MK_BINOP op = | ||
let afn = AP_TERM op in | ||
fun (lth,rth) -> MK_COMB(afn lth,rth);; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* Terminal conversion combinators. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let (NO_CONV:conv) = fun tm -> failwith "NO_CONV";; | ||
|
||
let (ALL_CONV:conv) = REFL;; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* Combinators for sequencing, trying, repeating etc. conversions. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let ((THENC):conv -> conv -> conv) = | ||
fun conv1 conv2 t -> | ||
let th1 = conv1 t in | ||
let th2 = conv2 (rand(concl th1)) in | ||
TRANS th1 th2;; | ||
|
||
let ((ORELSEC):conv -> conv -> conv) = | ||
fun conv1 conv2 t -> | ||
try conv1 t with Failure _ -> conv2 t;; | ||
|
||
let (FIRST_CONV:conv list -> conv) = end_itlist (fun c1 c2 -> c1 ORELSEC c2);; | ||
|
||
let (EVERY_CONV:conv list -> conv) = | ||
fun l -> itlist (fun c1 c2 -> c1 THENC c2) l ALL_CONV;; | ||
|
||
let REPEATC = | ||
let rec REPEATC conv t = | ||
((conv THENC (REPEATC conv)) ORELSEC ALL_CONV) t in | ||
(REPEATC:conv->conv);; | ||
|
||
let (CHANGED_CONV:conv->conv) = | ||
fun conv tm -> | ||
let th = conv tm in | ||
let l,r = dest_eq (concl th) in | ||
if aconv l r then failwith "CHANGED_CONV" else th;; | ||
|
||
let TRY_CONV conv = conv ORELSEC ALL_CONV;; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* Subterm conversions. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let (RATOR_CONV:conv->conv) = | ||
fun conv tm -> | ||
match tm with | ||
Comb(l,r) -> AP_THM (conv l) r | ||
| _ -> failwith "RATOR_CONV: Not a combination";; | ||
|
||
let (RAND_CONV:conv->conv) = | ||
fun conv tm -> | ||
match tm with | ||
Comb(l,r) -> MK_COMB(REFL l,conv r) | ||
| _ -> failwith "RAND_CONV: Not a combination";; | ||
|
||
let LAND_CONV = RATOR_CONV o RAND_CONV;; | ||
|
||
let (COMB2_CONV: conv->conv->conv) = | ||
fun lconv rconv tm -> | ||
match tm with | ||
Comb(l,r) -> MK_COMB(lconv l,rconv r) | ||
| _ -> failwith "COMB2_CONV: Not a combination";; | ||
|
||
let COMB_CONV = W COMB2_CONV;; | ||
|
||
let (ABS_CONV:conv->conv) = | ||
fun conv tm -> | ||
let v,bod = dest_abs tm in | ||
let th = conv bod in | ||
try ABS v th with Failure _ -> | ||
let gv = genvar(type_of v) in | ||
let gbod = vsubst[gv,v] bod in | ||
let gth = ABS gv (conv gbod) in | ||
let gtm = concl gth in | ||
let l,r = dest_eq gtm in | ||
let v' = variant (frees gtm) v in | ||
let l' = alpha v' l and r' = alpha v' r in | ||
EQ_MP (ALPHA gtm (mk_eq(l',r'))) gth;; | ||
|
||
let BINDER_CONV conv tm = | ||
if is_abs tm then ABS_CONV conv tm | ||
else RAND_CONV(ABS_CONV conv) tm;; | ||
|
||
let SUB_CONV conv tm = | ||
match tm with | ||
Comb(_,_) -> COMB_CONV conv tm | ||
| Abs(_,_) -> ABS_CONV conv tm | ||
| _ -> REFL tm;; | ||
|
||
let (BINOP_CONV:conv->conv) = | ||
fun conv tm -> | ||
let lop,r = dest_comb tm in | ||
let op,l = dest_comb lop in | ||
MK_COMB(AP_TERM op (conv l),conv r);; | ||
|
||
let (BINOP2_CONV:conv->conv->conv) = | ||
fun conv1 conv2 tm -> | ||
let lop,r = dest_comb tm in | ||
let op,l = dest_comb lop in | ||
MK_COMB(AP_TERM op (conv1 l),conv2 r);; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* Depth conversions; internal use of a failure-propagating `Boultonized' *) | ||
(* version to avoid a great deal of reuilding of terms. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let (ONCE_DEPTH_CONV: conv->conv), | ||
(DEPTH_CONV: conv->conv), | ||
(REDEPTH_CONV: conv->conv), | ||
(TOP_DEPTH_CONV: conv->conv), | ||
(TOP_SWEEP_CONV: conv->conv) = | ||
let THENQC conv1 conv2 tm = | ||
try let th1 = conv1 tm in | ||
try let th2 = conv2(rand(concl th1)) in TRANS th1 th2 | ||
with Failure _ -> th1 | ||
with Failure _ -> conv2 tm | ||
and THENCQC conv1 conv2 tm = | ||
let th1 = conv1 tm in | ||
try let th2 = conv2(rand(concl th1)) in TRANS th1 th2 | ||
with Failure _ -> th1 | ||
and COMB_QCONV conv tm = | ||
match tm with | ||
Comb(l,r) -> | ||
(try let th1 = conv l in | ||
try let th2 = conv r in MK_COMB(th1,th2) | ||
with Failure _ -> AP_THM th1 r | ||
with Failure _ -> AP_TERM l (conv r)) | ||
| _ -> failwith "COMB_QCONV: Not a combination" in | ||
let rec REPEATQC conv tm = THENCQC conv (REPEATQC conv) tm in | ||
let SUB_QCONV conv tm = | ||
match tm with | ||
Abs(_,_) -> ABS_CONV conv tm | ||
| _ -> COMB_QCONV conv tm in | ||
let rec ONCE_DEPTH_QCONV conv tm = | ||
(conv ORELSEC (SUB_QCONV (ONCE_DEPTH_QCONV conv))) tm | ||
and DEPTH_QCONV conv tm = | ||
THENQC (SUB_QCONV (DEPTH_QCONV conv)) | ||
(REPEATQC conv) tm | ||
and REDEPTH_QCONV conv tm = | ||
THENQC (SUB_QCONV (REDEPTH_QCONV conv)) | ||
(THENCQC conv (REDEPTH_QCONV conv)) tm | ||
and TOP_DEPTH_QCONV conv tm = | ||
THENQC (REPEATQC conv) | ||
(THENCQC (SUB_QCONV (TOP_DEPTH_QCONV conv)) | ||
(THENCQC conv (TOP_DEPTH_QCONV conv))) tm | ||
and TOP_SWEEP_QCONV conv tm = | ||
THENQC (REPEATQC conv) | ||
(SUB_QCONV (TOP_SWEEP_QCONV conv)) tm in | ||
(fun c -> TRY_CONV (ONCE_DEPTH_QCONV c)), | ||
(fun c -> TRY_CONV (DEPTH_QCONV c)), | ||
(fun c -> TRY_CONV (REDEPTH_QCONV c)), | ||
(fun c -> TRY_CONV (TOP_DEPTH_QCONV c)), | ||
(fun c -> TRY_CONV (TOP_SWEEP_QCONV c));; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* Apply at leaves of op-tree; NB any failures at leaves cause failure. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let rec DEPTH_BINOP_CONV op conv tm = | ||
match tm with | ||
Comb(Comb(op',l),r) when Pervasives.compare op' op = 0 -> | ||
let l,r = dest_binop op tm in | ||
let lth = DEPTH_BINOP_CONV op conv l | ||
and rth = DEPTH_BINOP_CONV op conv r in | ||
MK_COMB(AP_TERM op' lth,rth) | ||
| _ -> conv tm;; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* Follow a path. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let PATH_CONV = | ||
let rec path_conv s cnv = | ||
match s with | ||
[] -> cnv | ||
| "l"::t -> RATOR_CONV (path_conv t cnv) | ||
| "r"::t -> RAND_CONV (path_conv t cnv) | ||
| _::t -> ABS_CONV (path_conv t cnv) in | ||
fun s cnv -> path_conv (explode s) cnv;; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* Follow a pattern *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let PAT_CONV = | ||
let rec PCONV xs pat conv = | ||
if mem pat xs then conv | ||
else if not(exists (fun x -> free_in x pat) xs) then ALL_CONV | ||
else if is_comb pat then | ||
COMB2_CONV (PCONV xs (rator pat) conv) (PCONV xs (rand pat) conv) | ||
else | ||
ABS_CONV (PCONV xs (body pat) conv) in | ||
fun pat -> let xs,pbod = strip_abs pat in PCONV xs pbod;; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* Symmetry conversion. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let SYM_CONV tm = | ||
try let th1 = SYM(ASSUME tm) in | ||
let tm' = concl th1 in | ||
let th2 = SYM(ASSUME tm') in | ||
DEDUCT_ANTISYM_RULE th2 th1 | ||
with Failure _ -> failwith "SYM_CONV";; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* Conversion to a rule. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let CONV_RULE (conv:conv) th = | ||
EQ_MP (conv(concl th)) th;; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* Substitution conversion. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let SUBS_CONV ths tm = | ||
try if ths = [] then REFL tm else | ||
let lefts = map (lhand o concl) ths in | ||
let gvs = map (genvar o type_of) lefts in | ||
let pat = subst (zip gvs lefts) tm in | ||
let abs = list_mk_abs(gvs,pat) in | ||
let th = rev_itlist | ||
(fun y x -> CONV_RULE (RAND_CONV BETA_CONV THENC LAND_CONV BETA_CONV) | ||
(MK_COMB(x,y))) ths (REFL abs) in | ||
if rand(concl th) = tm then REFL tm else th | ||
with Failure _ -> failwith "SUBS_CONV";; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* Get a few rules. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let BETA_RULE = CONV_RULE(REDEPTH_CONV BETA_CONV);; | ||
|
||
let GSYM = CONV_RULE(ONCE_DEPTH_CONV SYM_CONV);; | ||
|
||
let SUBS ths = CONV_RULE (SUBS_CONV ths);; | ||
|
||
(* ------------------------------------------------------------------------- *) | ||
(* A cacher for conversions. *) | ||
(* ------------------------------------------------------------------------- *) | ||
|
||
let CACHE_CONV = | ||
let ALPHA_HACK th = | ||
let tm' = lhand(concl th) in | ||
fun tm -> if tm' = tm then th else TRANS (ALPHA tm tm') th in | ||
fun conv -> | ||
let net = ref empty_net in | ||
fun tm -> try tryfind (fun f -> f tm) (lookup tm (!net)) | ||
with Failure _ -> | ||
let th = conv tm in | ||
(net := enter [] (tm,ALPHA_HACK th) (!net); th);; |