Fricative Detection Using 1D CNNs
1- Install CUDA and CUDNN, recommended versions
-
CUDA Version 10.0
-
CUDNN Version 7.4.1
2- Install python (Python >= 3.6 recommended)
3- Setup the required dependencies
$ git clone https://github.com/yurtmete/FriDNN.git
$ cd FriDNN
$ virtualenv env -p python3.6
$ source env/bin/activate
$ pip install -e .
Use the main script to train a model:
$ python train_test/main.py -h
usage: main.py [-h] -D <TimitDirectory> [-d <Delay>] -t <TargetDirectory>
[--test_only]
optional arguments:
-h, --help show this help message and exit
-D <TimitDirectory>, --timit_directory <TimitDirectory>
Directory containing TIMIT dataset.
-d <Delay>, --delay <Delay>
Detection delay in samples
-t <TargetDirectory>, --target_dir <TargetDirectory>
Target directory for the experiment
--test_only Test already trained model
python train_test.py -D /home/user/workspace -t experiment_1
Note: /home/user/workspace directory should hold TIMIT folder.
Note: Checkpoints, performance results, tensorboard logs, model summary will be saved in experiment_1 folder.
Run the following command to test the model that is used in the paper to report the performance:
python train_test.py -D /home/user/workspace -t model_in_paper --test_only
Note: Target directory should be set to model_in_paper. It holds the checkpoint of the model we used in our paper.
Note: The flag --test_only should be passed, as the training is already performed.