This study was developed with Filipe Roberto Ramos (https://ciencia.iscte-iul.pt/authors/filipe-roberto-de-jesus-ramos/cv) for his phD thesis entitled "Data Science in the Modeling and Forecasting of Financial Timeseries: from Classic methodologies to Deep Learning". Submitted in 2021 to Instituto Universitário de Lisboa - ISCTE Business School, Lisboa, Portugal.
- Imports and Defines
- Data Inspection
- Data Visualization
- Data Analysis
- Hypothesis Test
- Imports and Defines
- Imports
- Define Functions
- Define Univariate Time-Series
- Stationarity of the Time-Series
- Data transformation and its graphical representation
- Normality tests
- Jarques-Bera
- Kolmogorov-Smirnov
- Unit Root and Stationarity Tests
- The Augmented Dickey-Fuller test
- Kwiatkowski-Phillips-Schmidt-Shin
- Correlation plots
- (S)ARIMA Selection
- Pre-processing
- Model training
- Model Comparison based on Information Criteria
- Selected Models Information Criteria Comparison
- Selected Models Cross-Validation
- Model Validation
- Model Residual Analysis
- Normality tests
- Kurtosis and Kurtosis Test
- Skew and Skewness Test
- Jarque-Bera and Kolmogorov-Smirnov tests
- Engle's Test for Autoregressive Conditional Heteroscedasticity (ARCH)
- Test for No Autocorrelation
- Brock–Dechert–Scheinkman test
- Breusch-Godfrey test [NOT IN SARIMA]
- Box-Pierce and Ljung-Box tests
- QQplot
- Auto-correlation and Partial Auto-correlation functions
- Model Prediction
- Model Prediction Overview
- Imports and Defines
- Imports
- Define Functions
- Define Univariate Time-Series
- Data Visualization
- Model Training
- Single Exponential Smoothing
- TS (N, N) - Simple Exponential Smoothing
- Double Exponential Smoothing
- TS (A, N) - Holt’s linear method
- TS (Ad, N) - Additive damped trend method
- Triple Exponential Smoothing
- TS (N, A) method
- TS (A, A) - Additive Holt-Winters method
- TS (Ad, A) method
- TS (N, M) method
- TS (A, M) Multiplicative Holt-Winters’ method
- TS (Ad, M) Holt-Winters’ damped method
- Model Selection
- Model Validation
- Normality Test
- Kurtosis and Kurtosis Test
- Skew and Skewness Test
- Jarque-Bera test
- Kolmogorov-Smirnov test
- Engle's Test for Autoregressive Conditional Heteroscedasticity (ARCH)
- Test for No Autocorrelation
- Brock–Dechert–Scheinkman test
- Box-Pierce and Ljung-Box tests
- QQplot
- Plot Auto-correlation and Partial Auto-correlation functions
- Model Prediction
- Model Prediction Overview
And DNN_OurApproach
- Imports and Defines
- Imports
- Define Functions
- Define Univariate Time-Series
- Training Deep Neural Network
- Data Pre-Processing
- Visualization of Data Pre-Processed
- Model Selection (tune hyper-parameters)
- Cross-Validation
- Compute Cross-Validation Errors
- Cross-Validation Performance
- Cross-Validation Plot
- Model forecasting
- Perform statistics on predictions
- Statistics cleaning
- Plot Prediction
- Plot Forecast in-sample vs out-sample
APA
Ramos, F. (2021). Data Science na Modelação e Previsão de Séries Económico-financeiras: das Metodologias Clássicas ao Deep Learning. (PhD Thesis submitted, Instituto Universitário de Lisboa - ISCTE Business School, Lisboa, Portugal).
@phdthesis{FRRamos2021,
AUTHOR = {Filipe R. Ramos},
TITLE = {Data Science na Modelação e Previsão de Séries Económico-financeiras: das Metodologias Clássicas ao Deep Learning},
PUBLISHER = {PhD Thesis submitted, Instituto Universitário de Lisboa - ISCTE Business School, Lisboa, Portugal},
YEAR = {2021}
}