-
Notifications
You must be signed in to change notification settings - Fork 95
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Feat/simplify jit #295
Draft
ayoub-louati
wants to merge
7
commits into
main
Choose a base branch
from
feat/simplify-jit
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Draft
Feat/simplify jit #295
Changes from all commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
ce339f9
feat: add new autotune to replace jit function
ayoub-louati 0b79f4c
feat: update autotuner + add heuristics + update linear layer
ayoub-louati 04a5276
feat: fix autotuner
ayoub-louati b1198f8
feat: fix autotune and add signature in autotune call
ayoub-louati f8ecb2b
feat: use batched matmul kernl with new autotune
ayoub-louati 0e77f9f
feat: temporary fix for cache key
ayoub-louati d52fe81
feat: clean autotune
ayoub-louati File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,260 @@ | ||
import ast | ||
import builtins | ||
import inspect | ||
import logging | ||
import random | ||
import re | ||
import string | ||
import textwrap | ||
import threading | ||
from typing import Dict, List, Optional | ||
|
||
import torch | ||
import triton | ||
from triton import Config | ||
from triton.runtime.jit import get_cuda_stream | ||
|
||
log = logging.getLogger(__name__) | ||
|
||
|
||
class KernelInterface: | ||
def __getitem__(self, grid): | ||
""" | ||
A JIT function is launched with: fn[grid](*args, **kwargs). | ||
Hence JITFunction.__getitem__ returns a callable proxy that | ||
memorizes the grid. | ||
""" | ||
stream = get_cuda_stream(torch.cuda.current_device()) | ||
|
||
def launcher(*args, **kwargs): | ||
return self.run(*args, grid=grid, stream=stream, **kwargs) | ||
|
||
return launcher | ||
|
||
|
||
class Autotuner(KernelInterface): | ||
""" | ||
Simplified version of Triton autotuner. | ||
Unlike the main triton Autotuner, this version can precompile all | ||
configs, and does not rely on the Triton JIT. | ||
""" | ||
|
||
def __init__(self, fn, configs, signature, key, reset_to_zero, prune_configs_by: Dict = None): | ||
super().__init__() | ||
self.launchers = [] | ||
if not configs: | ||
self.configs = [Config(dict(), num_warps=4, num_stages=2)] | ||
else: | ||
self.configs = configs | ||
self.signature = signature | ||
fn_signature = inspect.signature(fn) | ||
self.arg_names = [v.name for v in fn_signature.parameters.values()] | ||
self.key_idx = [self.arg_names.index(k) for k in key] | ||
self.cache = dict() | ||
self.src = textwrap.dedent(inspect.getsource(fn)) | ||
self.src = self.src[self.src.find("def"):] | ||
# hook to reset all required tensor to zeros before relaunching a kernel | ||
self.hook = lambda args: 0 | ||
if reset_to_zero is not None: | ||
self.reset_idx = [self.arg_names.index(k) for k in reset_to_zero] | ||
|
||
def _hook(args): | ||
for i in self.reset_idx: | ||
args[i].zero_() | ||
|
||
self.hook = _hook | ||
if prune_configs_by: | ||
perf_model, top_k = prune_configs_by["perf_model"], prune_configs_by["top_k"] | ||
if "early_config_prune" in prune_configs_by: | ||
early_config_prune = prune_configs_by["early_config_prune"] | ||
else: | ||
perf_model, top_k, early_config_prune = None, None, None | ||
self.perf_model, self.configs_top_k = perf_model, top_k | ||
self.early_config_prune = early_config_prune | ||
self.fn = fn | ||
self.fn.cache_key = ''.join(random.choice(string.printable) for i in range(20)) | ||
self.__annotations__ = fn.__annotations__ | ||
# index of constexprs | ||
self.constexprs = [self.arg_names.index(ann) for ann in self.__annotations__.keys()] | ||
self.fn.parse = self.parse | ||
self.fn.src = self.src | ||
self.lock = threading.Lock() | ||
|
||
def parse(self): | ||
tree = ast.parse(self.src) | ||
assert isinstance(tree, ast.Module) | ||
assert len(tree.body) == 1 | ||
assert isinstance(tree.body[0], ast.FunctionDef) | ||
return tree | ||
|
||
def precompile(self, warm_cache_only_with_cc=None): | ||
with self.lock: | ||
if self.launchers: | ||
return | ||
self.launchers = [self._precompile_config(c, warm_cache_only_with_cc) for c in self.configs] | ||
self.configs = None | ||
|
||
@staticmethod | ||
def is_divisible_by_16(x): | ||
if hasattr(x, "data_ptr"): | ||
return x.data_ptr() % 16 == 0 | ||
elif isinstance(x, int): | ||
return x % 16 == 0 | ||
if x is None: | ||
return True | ||
return False | ||
|
||
def _precompile_config(self, cfg: Config, warm_cache_only_with_cc: int): | ||
"""Ahead of time compile a given autotuner config.""" | ||
# make constants: | ||
constexpr_args = [f'{arg}' for i, arg in enumerate(self.arg_names) if i in self.constexprs] | ||
constants = {i: k for i, k in zip(self.constexprs, constexpr_args)} | ||
for k, v in constants.items(): | ||
if v in cfg.kwargs.keys(): | ||
constants[k] = cfg.kwargs[v] | ||
compile_meta = {"constants": constants, "signature": self.signature, "num_warps": cfg.num_warps, | ||
"num_stages": cfg.num_stages} | ||
cfg.divisible_by_16 = [i for i, arg in enumerate(self.arg_names) if self.is_divisible_by_16(arg)] | ||
cfg.equal_to_1 = [i for i, arg in enumerate(self.arg_names) if isinstance(arg, int) and arg == 1] | ||
|
||
if warm_cache_only_with_cc: | ||
triton.compile( | ||
self.fn, | ||
warm_cache_only=True, | ||
cc=warm_cache_only_with_cc, | ||
**compile_meta, | ||
) | ||
return | ||
|
||
current_device = torch.cuda.current_device() | ||
torch.cuda.set_device(current_device) | ||
compile_meta["device"] = current_device | ||
|
||
binary = triton.compile( | ||
self.fn, | ||
configs=[cfg], | ||
**compile_meta, | ||
) | ||
|
||
call_args = [arg for i, arg in enumerate(self.arg_names) if i not in self.constexprs and arg != "stream"] | ||
def_args = list(self.arg_names) | ||
while def_args and def_args[-1] in cfg.kwargs: | ||
def_args.pop() | ||
|
||
scope = { | ||
"grid_meta": cfg.kwargs, | ||
"bin": binary, | ||
"torch": torch, | ||
"set_device": torch.cuda.set_device, | ||
"current_device": torch.cuda.current_device, | ||
} | ||
exec( | ||
f""" | ||
def launcher({', '.join(def_args)}, grid, stream): | ||
# set_device(current_device()) # TODO(jansel): is this needed? | ||
if callable(grid): | ||
grid = grid(grid_meta) | ||
grid_size = len(grid) | ||
grid_0 = grid[0] | ||
grid_1 = grid[1] if grid_size > 1 else 1 | ||
grid_2 = grid[2] if grid_size > 2 else 1 | ||
bin.c_wrapper(grid_0, grid_1, grid_2, bin.num_warps, bin.shared, stream, bin.cu_function, None, None, None, {', '.join(call_args)}) | ||
""".lstrip(), | ||
scope, | ||
) | ||
|
||
launcher = scope["launcher"] | ||
launcher.config = cfg | ||
return launcher | ||
|
||
def bench(self, launcher, *args, grid, **kwargs): | ||
"""Measure the performance of a given launcher""" | ||
|
||
def kernel_call(): | ||
if launcher.config.pre_hook is not None: | ||
launcher.config.pre_hook({**zip(self.arg_names, args), **launcher.config.kwargs}) | ||
launcher( | ||
*args, | ||
grid=grid, | ||
**kwargs | ||
) | ||
|
||
from triton.testing import do_bench | ||
|
||
return do_bench(kernel_call) | ||
|
||
@staticmethod | ||
def clone_preserve_strides(x): | ||
needed_size = sum((shape - 1) * stride for shape, stride in zip(x.size(), x.stride())) + 1 | ||
buffer = torch.as_strided(x, (needed_size,), (1,)).clone() | ||
return torch.as_strided(buffer, x.size(), x.stride()) | ||
|
||
def autotune_to_one_config(self, *args, **kwargs): | ||
"""Do the actual autotuning""" | ||
|
||
# clone the input args to avoid autotune contaminating them if | ||
# the kernel does in-place stores | ||
cloned_args = [self.clone_preserve_strides(arg) if isinstance(arg, torch.Tensor) else arg for arg in args] | ||
timings = {launcher: self.bench(launcher, *cloned_args, **kwargs) for launcher in self.launchers} | ||
self.launchers = [builtins.min(timings, key=timings.get)] | ||
|
||
def run(self, *args, grid, **kwargs): | ||
stream = get_cuda_stream(torch.cuda.current_device()) | ||
if len(self.launchers) != 1: | ||
if len(self.launchers) == 0: | ||
self.precompile() | ||
if len(self.launchers) > 1: | ||
self.autotune_to_one_config(*args, grid=grid, **kwargs) | ||
|
||
(launcher,) = self.launchers | ||
if launcher.config.pre_hook is not None: | ||
launcher.config.pre_hook({**zip(self.arg_names, args), **launcher.config.kwargs}) | ||
try: | ||
result = launcher(*args, grid=grid, **kwargs) | ||
except TypeError as e: | ||
if re.match(r"function takes exactly \d+ arguments \(\d+ given\)", str(e)): | ||
raise RuntimeError( | ||
"""Consider updating Triton with | ||
`pip install -U "git+https://github.com/openai/triton@af76c989eb4799b015f8b288ccd8421558772e56#subdirectory=python"`""" | ||
) | ||
else: | ||
raise e | ||
|
||
return result | ||
|
||
|
||
def autotune( | ||
configs: List[Config], | ||
key: List[str], | ||
signature: Dict[int, str], | ||
reset_to_zero: Optional[List[str]] = None, | ||
prune_configs_by: Optional[Dict] = None, | ||
): | ||
""" | ||
A copy of triton.autotune that calls our subclass. | ||
""" | ||
configs = unique_configs(configs) | ||
|
||
def decorator(fn): | ||
return Autotuner( | ||
fn, | ||
configs=configs, | ||
signature=signature, | ||
key=key, | ||
reset_to_zero=reset_to_zero, | ||
prune_configs_by=prune_configs_by, | ||
) | ||
|
||
return decorator | ||
|
||
|
||
def unique_configs(configs: List[Config]): | ||
"""Remove duplicate configurations""" | ||
seen = set() | ||
pruned_configs = [] | ||
for cfg in configs: | ||
key = tuple(cfg.kwargs.items()) | ||
if key not in seen: | ||
seen.add(key) | ||
pruned_configs.append(cfg) | ||
return pruned_configs |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
_type_of can generate it
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I tried it, that's true we can use it. In the example of torch autotune I think they're passing the signature directly.