Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

hyper parameter search #6

Draft
wants to merge 2 commits into
base: main
Choose a base branch
from
Draft
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
hyper parameter search
DavidAkinpelu committed Mar 30, 2024
commit 8f88485ecc62947d4abd535c300afc356927d600
96 changes: 96 additions & 0 deletions scripts/hyper_search.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
import argparse
from data_loader import Train_Test_Split, ESPDataset, ESPDataModule
import optuna
from optuna.integration import PyTorchLightningPruningCallback
from pytorch_lightning.callbacks import ModelCheckpoint
from env import *
from train import ESPFailureModel
from data_loader import Train_Test_Split, ESPDataset, ESPDataModule
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger



def objective(trial, seed, split):
hidden_size = trial.suggest_categorical('hidden_size', [32, 64, 128, 256])
dropout = trial.suggest_float('dropout', 0.0, 0.5, step=0.1)
num_stack_layers = trial.suggest_int('num_stack_layers', 1, 3)
num_epochs = trial.suggest_categorical('num_epochs', [150, 200, 250, 300])
learning_rate = trial.suggest_categorical('learning_rate', [1e-3, 1e-4, 1e-5])
num_layers = trial.suggest_int('num_layers', 1, 3)
batch_size = trial.suggest_categorical('batch_size', [32, 64, 128, 256])

# set seed for reproducibility
pl.seed_everything(seed=seed)

tts = Train_Test_Split(f"{DAILY_OUTPUT_FOLDER}_{SLIDE_N}", split=split)
data_paths = tts.split_data()

# Create the dataloaders
data_module = ESPDataModule(train_paths=data_paths["train"],
val_paths=data_paths["val"],
test_paths=data_paths["test"],
batch_size=batch_size)

# Load a single file to get the model dimensions
single_batch = next(iter(ESPDataset(data_paths["val"][:1])))
n_features = single_batch["features"].shape[-1]
n_classes= single_batch["labels"].shape[-1]

# Initialize the model
model = ESPFailureModel(n_features=n_features,
n_classes=n_classes,
lr=learning_rate,
dropout=dropout,
hidden_size=hidden_size,
num_stack_layers=num_stack_layers,
n_layers=num_layers)

# Define the model callbacks
checkpoint_call_back = ModelCheckpoint(
dirpath=f"checkpoints/{trial.number}",
filename="best-chckpt",
save_top_k=1,
verbose=True,
monitor="val_loss",
mode="min"
)

logger = TensorBoardLogger(save_dir="lightning_logs", name="JTK_Challenge")

trainer = pl.Trainer(logger=logger,
callbacks=checkpoint_call_back,
max_epochs=num_epochs,
deterministic=True,
enable_progress_bar=True)

model.save_hyperparameters({"hidden_dim": hidden_size,
"learning_rate": learning_rate,
"dropout": dropout,
"num_stack_layers": num_stack_layers,
"num_layers": num_layers,
"num_epochs": num_epochs,
"seed": seed,
"split": split,
"batch_size": batch_size,
"device":trainer.accelerator})

trainer.fit(model, data_module)

return trainer.callback_metrics["val_loss"].item()



if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Hyperparameter search for ESP Failure model")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--split", type=float, default=0.8)
parser.add_argument("--n_trials", type=int, default=300)
args = parser.parse_args()

study = optuna.create_study(direction='minimize')
study.optimize(lambda trial: objective(trial, args.seed, args.split), n_trials=args.n_trials)

best_params = study.best_params
print("Best hyperparameters:", best_params)
print("Best value:", study.best_value)