This repo is a collection of the challenging panoptic segmentation, including papers, codes, and benchmark results, etc.
Summarize in one sentence : Panoptic Segmentation proposes to solve the semantic segmentation(*Stuff*) and instance segmentation(*Thing*) in a unified and general manner.Generally, the datasets which contains both semantic and instance annotations can be used to solve the challenging panoptic task.
- Cityscapes
- Mapillary Vistas
- ADE20K
- COCO-Panoptic
- BDD100K (the instance annotations are temporaily not released)
PQ
are the standard metrics described in Panoptic Segmentation.
PC
are the standard metrics described in DeeperLab.
- COCO Benchmark
Method | Backbone | PQ | PQ-Thing | PQ-Stuff | SQ | RQ | mIoU | AP-Mask | PC | e2e |
---|---|---|---|---|---|---|---|---|---|---|
AUNet | ResNet-101 | 45.2 | 54.4 | 31.3 | 80.6 | 54.7 | - | - | - | ✔️ |
UPSNet | ResNet-101 | 42.5 | 48.6 | 33.4 | - | - | 54.3 | 34.3 | - | ✔️ |
OANet | ResNet-101 | 41.3 | 50.4 | 27.7 | - | - | - | - | - | ✔️ |
Panoptic FPN | ResNet-101 | 40.9 | 48.3 | 29.7 | - | - | - | - | - | ✔️ |
DeeperLab | Xception-71 | 34.3 | 37.5 | 29.6 | 77.1 | 43.1 | - | - | 56.8 | ✔️ |
- Cityscapes Benchmark
Method | Backbone | PQ | PQ-Thing | PQ-Stuff | SQ | RQ | mIoU | AP-Mask | PC | e2e |
---|---|---|---|---|---|---|---|---|---|---|
Panoptic(Merge) | - | 61.2 | 66.4 | 54.0 | 80.9 | 74.4 | - | - | - | ❌ |
UPSNet | ResNet-50 | 59.3 | 54.6 | 62.7 | 79.7 | 73.0 | 75.2 | 33.3 | - | ✔️ |
TASCNet | ResNet-101 | 59.2 | 56 | 61.5 | - | - | 77.8 | 37.6 | - | ✔️ |
Panoptic FPN | ResNet-101 | 58.1 | 52.0 | 62.5 | - | - | 75.7 | 33.0 | - | ✔️ |
DeeperLab | Xception-71 | 56.5 | - | - | - | - | - | - | 75.6 | ✔️ |
AUNet | ResNet-101 | 59.0 | 54.8 | 62.1 | - | - | 75.6 | 34.4 | - | ✔️ |
- Mapillary Benchmark
Method | Backbone | PQ | PQ-Thing | PQ-Stuff | SQ | RQ | mIoU | AP-Mask | PC | e2e |
---|---|---|---|---|---|---|---|---|---|---|
Panoptic(Merge) | - | 38.3 | 41.8 | 35.7 | 73.6 | 47.7 | - | - | - | ❌ |
TASCNet | ResNet-101 | 32.6 | 31.3 | 34.4 | - | - | 35.0 | 18.5 | - | ✔️ |
DeeperLab | Xception-71 | 31.6 | 25.0 | 40.3 | 75.5 | 40.1 | - | - | 55.3 | ✔️ |
-
Panoptic Segmentation: Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, Piotr Dollár.
"Panoptic Segmentation." CVPR (2019). [paper] -
Panoptic FPN: Alexander Kirillov, Ross Girshick, Kaiming He, Piotr Dollár.
"Panoptic Feature Pyramid Networks." CVPR (2019 oral). [paper] -
AUNet: Yanwei Li, Xinze Chen, Zheng Zhu, Lingxi Xie, Guan Huang, Dalong Du, Xingang Wang.
"Attention-guided Unified Network for Panoptic Segmentation." CVPR (2019). [paper] -
UPSNet: Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, Raquel Urtasun.
"UPSNet: A Unified Panoptic Segmentation Network." CVPR (2019). [paper] [code] -
DeeperLab: Tien-Ju Yang, Maxwell D. Collins, Yukun Zhu, Jyh-Jing Hwang, Ting Liu, Xiao Zhang, Vivienne Sze, George Papandreou, Liang-Chieh Chen.
"DeeperLab: Single-Shot Image Parser." CVPR (2019). [paper] [project] [code] -
TASCNet: Jie Li, Allan Raventos, Arjun Bhargava, Takaaki Tagawa, Adrien Gaidon.
"Learning to Fuse Things and Stuff." CVPR (2019). [paper] -
OANet: Huanyu Liu, Chao Peng, Changqian Yu, Jingbo Wang, Xu Liu, Gang Yu, Wei Jiang.
"An End-to-End Network for Panoptic Segmentation." CVPR (2019). [paper] -
Eirikur Agustsson, Jasper R. R. Uijlings, Vittorio Ferrari .
"Interactive Full Image Segmentation by Considering All Regions Jointly." CVPR (2019). [paper]
- Qizhu Li, Anurag Arnab, Philip H.S. Torr.
"Weakly- and Semi-Supervised Panoptic Segmentation." ECCV (2018). [paper] [code]
-
Daan de Geus, Panagiotis Meletis, Gijs Dubbelman.
"Panoptic Segmentation with a Joint Semantic and Instance Segmentation Network." arXiv (2018). [paper] -
Daan de Geus, Panagiotis Meletis, Gijs Dubbelman.
"Single Network Panoptic Segmentation for Street Scene Understanding." arXiv (2019). [paper] -
David Owen, Ping-Lin Chang.
"Detecting Reflections by Combining Semantic and Instance Segmentation." arXiv (2019). [paper] -
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji.
"PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things." arXiv (2019). [paper]
- Face++ Detection Team: https://zhuanlan.zhihu.com/p/59141570