Skip to content

Commit

Permalink
refactor: Lint
Browse files Browse the repository at this point in the history
  • Loading branch information
jstoobysmith committed Jan 30, 2025
1 parent 22636db commit 32aefb7
Show file tree
Hide file tree
Showing 9 changed files with 209 additions and 166 deletions.
2 changes: 2 additions & 0 deletions HepLean.lean
Original file line number Diff line number Diff line change
Expand Up @@ -129,6 +129,8 @@ import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.SuperCommute
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.TimeOrder
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.Basic
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.NormalOrder
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.SuperCommute
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.TimeOrder
import HepLean.PerturbationTheory.Algebras.ProtoOperatorAlgebra.Basic
import HepLean.PerturbationTheory.Algebras.ProtoOperatorAlgebra.NormalOrder
import HepLean.PerturbationTheory.Algebras.ProtoOperatorAlgebra.TimeContraction
Expand Down
3 changes: 2 additions & 1 deletion HepLean/Mathematics/List/InsertIdx.lean
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,8 @@ lemma insertIdx_length_fst_append {I : Type} (φ : I) : (φs φs' : List I) →
List.insertIdx φs.length φ (φs ++ φs') = (φs ++ φ :: φs')
| [], φs' => by simp
| φ' :: φs, φs' => by
simp
simp only [List.length_cons, List.cons_append, List.insertIdx_succ_cons, List.cons.injEq,
true_and]
exact insertIdx_length_fst_append φ φs φs'

lemma get_eq_insertIdx_succAbove {I : Type} (i : I) (r : List I) (k : Fin r.length.succ) :
Expand Down
257 changes: 146 additions & 111 deletions HepLean/Mathematics/List/InsertionSort.lean

Large diffs are not rendered by default.

3 changes: 2 additions & 1 deletion HepLean/PerturbationTheory/Algebras/CrAnAlgebra/Grading.lean
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ def statisticSubmodule (f : FieldStatistic) : Submodule ℂ 𝓕.CrAnAlgebra :=
Submodule.span ℂ {a | ∃ φs, a = ofCrAnList φs ∧ (𝓕 |>ₛ φs) = f}

lemma ofCrAnList_mem_statisticSubmodule_of (φs : List 𝓕.CrAnStates) (f : FieldStatistic)
(h : (𝓕 |>ₛ φs) = f) :
(h : (𝓕 |>ₛ φs) = f) :
ofCrAnList φs ∈ statisticSubmodule f := by
refine Submodule.mem_span.mpr fun _ a => a ⟨φs, ⟨rfl, h⟩⟩

Expand Down Expand Up @@ -234,6 +234,7 @@ lemma directSum_eq_bosonic_plus_fermionic
conv_lhs => rw [hx, hy]
abel

/-- The instance of a graded algebra on `CrAnAlgebra`. -/
instance crAnAlgebraGrade : GradedAlgebra (A := 𝓕.CrAnAlgebra) statisticSubmodule where
one_mem := by
simp only [statisticSubmodule]
Expand Down
10 changes: 4 additions & 6 deletions HepLean/PerturbationTheory/Algebras/FieldOpAlgebra/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,6 @@ lemma ι_superCommute_ofCrAnState_superCommute_ofCrAnState_ofCrAnState (φ1 φ2
left
use φ1, φ2, φ3

@[simp]
lemma ι_superCommute_superCommute_ofCrAnState_ofCrAnState_ofCrAnState1 φ2 φ3 : 𝓕.CrAnStates) :
ι [[ofCrAnState φ1, ofCrAnState φ2]ₛca, ofCrAnState φ3]ₛca = 0 := by
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_singleton]
Expand All @@ -147,24 +146,23 @@ lemma ι_superCommute_superCommute_ofCrAnState_ofCrAnState_ofCrAnState (φ1 φ2
· rw [superCommute_fermionic_fermionic_symm h h']
simp [ofCrAnList_singleton]

@[simp]
lemma ι_superCommute_superCommute_ofCrAnState_ofCrAnState_ofCrAnList1 φ2 : 𝓕.CrAnStates)
(φs : List 𝓕.CrAnStates) :
ι [[ofCrAnState φ1, ofCrAnState φ2]ₛca, ofCrAnList φs]ₛca = 0 := by
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton]
rcases superCommute_ofCrAnList_ofCrAnList_bosonic_or_fermionic [φ1] [φ2] with h | h
· rw [superCommute_bosonic_ofCrAnList_eq_sum _ _ h]
simp [ofCrAnList_singleton]
simp [ofCrAnList_singleton, ι_superCommute_superCommute_ofCrAnState_ofCrAnState_ofCrAnState]
· rw [superCommute_fermionic_ofCrAnList_eq_sum _ _ h]
simp [ofCrAnList_singleton]
simp [ofCrAnList_singleton, ι_superCommute_superCommute_ofCrAnState_ofCrAnState_ofCrAnState]

@[simp]
lemma ι_superCommute_superCommute_ofCrAnState_ofCrAnState_crAnAlgebra1 φ2 : 𝓕.CrAnStates)
(a : 𝓕.CrAnAlgebra) : ι [[ofCrAnState φ1, ofCrAnState φ2]ₛca, a]ₛca = 0 := by
change (ι.toLinearMap ∘ₗ superCommute [ofCrAnState φ1, ofCrAnState φ2]ₛca) a = _
have h1 : (ι.toLinearMap ∘ₗ superCommute [ofCrAnState φ1, ofCrAnState φ2]ₛca) = 0 := by
apply (ofCrAnListBasis.ext fun l ↦ ?_)
simp
simp [ι_superCommute_superCommute_ofCrAnState_ofCrAnState_ofCrAnList]
rw [h1]
simp

Expand Down Expand Up @@ -239,7 +237,7 @@ lemma bosonicProj_mem_fieldOpIdealSet_or_zero (x : CrAnAlgebra 𝓕) (hx : x ∈
lemma fermionicProj_mem_fieldOpIdealSet_or_zero (x : CrAnAlgebra 𝓕) (hx : x ∈ 𝓕.fieldOpIdealSet) :
x.fermionicProj.1 ∈ 𝓕.fieldOpIdealSet ∨ x.fermionicProj = 0 := by
have hx' := hx
simp only [fieldOpIdealSet, exists_prop, Set.mem_setOf_eq] at hx
simp only [fieldOpIdealSet, exists_prop, Set.mem_setOf_eq] at hx
rcases hx with ⟨φ1, φ2, φ3, rfl⟩ | ⟨φc, φc', hφc, hφc', rfl⟩ | ⟨φa, φa', hφa, hφa', rfl⟩ |
⟨φ, φ', hdiff, rfl⟩
· rcases superCommute_superCommute_ofCrAnState_bosonic_or_fermionic φ1 φ2 φ3 with h | h
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -49,8 +49,11 @@ lemma ι_superCommute_eq_of_equiv_right (a b1 b2 : 𝓕.CrAnAlgebra) (h : b1 ≈
simp only [LinearMap.mem_ker, ← map_sub]
exact ι_superCommute_right_zero_of_mem_ideal a (b1 - b2) h

noncomputable def superCommuteRight (a : 𝓕.CrAnAlgebra) : FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift (ι.toLinearMap ∘ₗ CrAnAlgebra.superCommute a) (ι_superCommute_eq_of_equiv_right a)
/-- The super commutor on the `FieldOpAlgebra` defined as a linear map `[a,_]ₛ`. -/
noncomputable def superCommuteRight (a : 𝓕.CrAnAlgebra) :
FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift (ι.toLinearMap ∘ₗ CrAnAlgebra.superCommute a)
(ι_superCommute_eq_of_equiv_right a)
map_add' x y := by
obtain ⟨x, hx⟩ := ι_surjective x
obtain ⟨y, hy⟩ := ι_surjective y
Expand All @@ -64,11 +67,11 @@ noncomputable def superCommuteRight (a : 𝓕.CrAnAlgebra) : FieldOpAlgebra 𝓕
rw [← map_smul, ι_apply, ι_apply]
simp

lemma superCommuteRight_apply_ι (a b : 𝓕.CrAnAlgebra) : superCommuteRight a (ι b) = ι [a, b]ₛca := by
rfl
lemma superCommuteRight_apply_ι (a b : 𝓕.CrAnAlgebra) :
superCommuteRight a (ι b) = ι [a, b]ₛca := by rfl

lemma superCommuteRight_apply_quot (a b : 𝓕.CrAnAlgebra) : superCommuteRight a ⟦b⟧= ι [a, b]ₛca := by
rfl
lemma superCommuteRight_apply_quot (a b : 𝓕.CrAnAlgebra) :
superCommuteRight a ⟦b⟧= ι [a, b]ₛca := by rfl

lemma superCommuteRight_eq_of_equiv (a1 a2 : 𝓕.CrAnAlgebra) (h : a1 ≈ a2) :
superCommuteRight a1 = superCommuteRight a2 := by
Expand All @@ -85,6 +88,7 @@ lemma superCommuteRight_eq_of_equiv (a1 a2 : 𝓕.CrAnAlgebra) (h : a1 ≈ a2) :
simp only [add_sub_cancel]
simp

/-- The super commutor on the `FieldOpAlgebra`. -/
noncomputable def superCommute : FieldOpAlgebra 𝓕 →ₗ[ℂ]
FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift superCommuteRight superCommuteRight_eq_of_equiv
Expand Down
72 changes: 37 additions & 35 deletions HepLean/PerturbationTheory/Algebras/FieldOpAlgebra/TimeOrder.lean
Original file line number Diff line number Diff line change
Expand Up @@ -20,33 +20,35 @@ namespace FieldOpAlgebra
variable {𝓕 : FieldSpecification}

lemma ι_timeOrder_superCommute_superCommute_eq_time_ofCrAnList1 φ2 φ3 : 𝓕.CrAnStates}
(φs1 φs2 : List 𝓕.CrAnStates) (h :
(φs1 φs2 : List 𝓕.CrAnStates) (h :
crAnTimeOrderRel φ1 φ2 ∧ crAnTimeOrderRel φ1 φ3
crAnTimeOrderRel φ2 φ1 ∧ crAnTimeOrderRel φ2 φ3
crAnTimeOrderRel φ3 φ1 ∧ crAnTimeOrderRel φ3 φ2):
ι 𝓣ᶠ(ofCrAnList φs1 * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * ofCrAnList φs2)
= 0 := by
crAnTimeOrderRel φ3 φ1 ∧ crAnTimeOrderRel φ3 φ2) :
ι 𝓣ᶠ(ofCrAnList φs1 * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca *
ofCrAnList φs2) = 0 := by
let l1 :=
(List.takeWhile (fun c => ¬ crAnTimeOrderRel φ1 c) ((φs1 ++ φs2).insertionSort crAnTimeOrderRel))
(List.takeWhile (fun c => ¬ crAnTimeOrderRel φ1 c)
((φs1 ++ φs2).insertionSort crAnTimeOrderRel))
++ (List.filter (fun c => crAnTimeOrderRel φ1 c ∧ crAnTimeOrderRel c φ1) φs1)
let l2 := (List.filter (fun c => crAnTimeOrderRel φ1 c ∧ crAnTimeOrderRel c φ1) φs2)
++ (List.filter (fun c => crAnTimeOrderRel φ1 c ∧ ¬ crAnTimeOrderRel c φ1) ((φs1 ++ φs2).insertionSort crAnTimeOrderRel))
++ (List.filter (fun c => crAnTimeOrderRel φ1 c ∧ ¬ crAnTimeOrderRel c φ1)
((φs1 ++ φs2).insertionSort crAnTimeOrderRel))
have h123 : ι 𝓣ᶠ(ofCrAnList (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)) =
crAnTimeOrderSign (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ1, φ2, φ3]) * ι (ofCrAnList l2)):= by
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ1, φ2, φ3]) * ι (ofCrAnList l2)) := by
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ1, φ2, φ3] φs2
(by simp_all)
rw [timeOrder_ofCrAnList, show φs1 ++ φ1 :: φ2 :: φ3 :: φs2 = φs1 ++ [φ1, φ2, φ3] ++ φs2 by simp,
crAnTimeOrderList, h1]
(by simp_all)
rw [timeOrder_ofCrAnList, show φs1 ++ φ1 :: φ2 :: φ3 :: φs2 = φs1 ++ [φ1, φ2, φ3] ++ φs2
by simp, crAnTimeOrderList, h1]
simp only [List.append_assoc, List.singleton_append, decide_not,
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
have h132 : ι 𝓣ᶠ(ofCrAnList (φs1 ++ φ1 :: φ3 :: φ2 :: φs2)) =
crAnTimeOrderSign (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ1, φ3, φ2]) * ι (ofCrAnList l2)):= by
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ1, φ3, φ2]) * ι (ofCrAnList l2)) := by
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ1, φ3, φ2] φs2
(by simp_all)
rw [timeOrder_ofCrAnList, show φs1 ++ φ1 :: φ3 :: φ2 :: φs2 = φs1 ++ [φ1, φ3, φ2] ++ φs2 by simp,
crAnTimeOrderList, h1]
(by simp_all)
rw [timeOrder_ofCrAnList, show φs1 ++ φ1 :: φ3 :: φ2 :: φs2 = φs1 ++ [φ1, φ3, φ2] ++ φs2
by simp, crAnTimeOrderList, h1]
simp only [List.singleton_append, decide_not,
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
congr 1
Expand All @@ -67,11 +69,11 @@ lemma ι_timeOrder_superCommute_superCommute_eq_time_ofCrAnList {φ1 φ2 φ3 :
exact List.Perm.swap φ1 φ23]
have h231 : ι 𝓣ᶠ(ofCrAnList (φs1 ++ φ2 :: φ3 :: φ1 :: φs2)) =
crAnTimeOrderSign (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ2, φ3, φ1]) * ι (ofCrAnList l2)):= by
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ2, φ3, φ1]) * ι (ofCrAnList l2)) := by
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ2, φ3, φ1] φs2
(by simp_all)
rw [timeOrder_ofCrAnList, show φs1 ++ φ2 :: φ3 :: φ1 :: φs2 = φs1 ++ [φ2, φ3, φ1] ++ φs2 by simp,
crAnTimeOrderList, h1]
(by simp_all)
rw [timeOrder_ofCrAnList, show φs1 ++ φ2 :: φ3 :: φ1 :: φs2 = φs1 ++ [φ2, φ3, φ1] ++ φs2
by simp, crAnTimeOrderList, h1]
simp only [List.singleton_append, decide_not,
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
congr 1
Expand All @@ -85,11 +87,11 @@ lemma ι_timeOrder_superCommute_superCommute_eq_time_ofCrAnList {φ1 φ2 φ3 :
simp_all
have h321 : ι 𝓣ᶠ(ofCrAnList (φs1 ++ φ3 :: φ2 :: φ1 :: φs2)) =
crAnTimeOrderSign (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ3, φ2, φ1]) * ι (ofCrAnList l2)):= by
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ3, φ2, φ1]) * ι (ofCrAnList l2)) := by
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ3, φ2, φ1] φs2
(by simp_all)
rw [timeOrder_ofCrAnList, show φs1 ++ φ3 :: φ2 :: φ1 :: φs2 = φs1 ++ [φ3, φ2, φ1] ++ φs2 by simp,
crAnTimeOrderList, h1]
(by simp_all)
rw [timeOrder_ofCrAnList, show φs1 ++ φ3 :: φ2 :: φ1 :: φs2 = φs1 ++ [φ3, φ2, φ1] ++ φs2
by simp, crAnTimeOrderList, h1]
simp only [List.singleton_append, decide_not,
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
congr 1
Expand Down Expand Up @@ -125,7 +127,8 @@ lemma ι_timeOrder_superCommute_superCommute_eq_time_ofCrAnList {φ1 φ2 φ3 :
repeat rw [mul_assoc]
rw [← mul_sub, ← mul_sub, ← mul_sub]
rw [← sub_mul, ← sub_mul, ← sub_mul]
trans ι (ofCrAnList l1) * ι [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * ι (ofCrAnList l2)
trans ι (ofCrAnList l1) * ι [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca *
ι (ofCrAnList l2)
rw [mul_assoc]
congr
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_singleton]
Expand All @@ -137,7 +140,7 @@ lemma ι_timeOrder_superCommute_superCommute_eq_time_ofCrAnList {φ1 φ2 φ3 :
simp_all

lemma ι_timeOrder_superCommute_superCommute_ofCrAnList1 φ2 φ3 : 𝓕.CrAnStates}
(φs1 φs2 : List 𝓕.CrAnStates):
(φs1 φs2 : List 𝓕.CrAnStates) :
ι 𝓣ᶠ(ofCrAnList φs1 * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * ofCrAnList φs2)
= 0 := by
by_cases h :
Expand All @@ -150,7 +153,7 @@ lemma ι_timeOrder_superCommute_superCommute_ofCrAnList {φ1 φ2 φ3 : 𝓕.CrAn
simp

@[simp]
lemma ι_timeOrder_superCommute_superCommute1 φ2 φ3 : 𝓕.CrAnStates} (a b : 𝓕.CrAnAlgebra):
lemma ι_timeOrder_superCommute_superCommute1 φ2 φ3 : 𝓕.CrAnStates} (a b : 𝓕.CrAnAlgebra) :
ι 𝓣ᶠ(a * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * b) = 0 := by
let pb (b : 𝓕.CrAnAlgebra) (hc : b ∈ Submodule.span ℂ (Set.range ofCrAnListBasis)) :
Prop := ι 𝓣ᶠ(a * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * b) = 0
Expand Down Expand Up @@ -215,20 +218,21 @@ lemma ι_timeOrder_superCommute_eq_time {φ ψ : 𝓕.CrAnStates}
rw [h1]
simp only [map_smul]
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ φs' [φ, ψ] φs
(by simp_all)
(by simp_all)
rw [crAnTimeOrderList, show φs' ++ φ :: ψ :: φs = φs' ++ [φ, ψ] ++ φs by simp, h1]
have h2 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ φs' [ψ, φ] φs
(by simp_all)
(by simp_all)
rw [crAnTimeOrderList, show φs' ++ ψ :: φ :: φs = φs' ++ [ψ, φ] ++ φs by simp, h2]
repeat rw [ofCrAnList_append]
rw [smul_smul, mul_comm, ← smul_smul, ← smul_sub]
rw [map_mul, map_mul, map_mul, map_mul, map_mul, map_mul, map_mul, map_mul]
rw [← mul_smul_comm]
rw [mul_assoc, mul_assoc, mul_assoc ,mul_assoc ,mul_assoc ,mul_assoc]
rw [mul_assoc, mul_assoc, mul_assoc, mul_assoc, mul_assoc, mul_assoc]
rw [← mul_sub, ← mul_sub, mul_smul_comm, mul_smul_comm, ← smul_mul_assoc,
← smul_mul_assoc]
rw [← sub_mul]
have h1 : (ι (ofCrAnList [φ, ψ]) - (exchangeSign (𝓕.crAnStatistics φ)) (𝓕.crAnStatistics ψ) • ι (ofCrAnList [ψ, φ])) =
have h1 : (ι (ofCrAnList [φ, ψ]) -
(exchangeSign (𝓕.crAnStatistics φ)) (𝓕.crAnStatistics ψ) • ι (ofCrAnList [ψ, φ])) =
ι [ofCrAnState φ, ofCrAnState ψ]ₛca := by
rw [superCommute_ofCrAnState_ofCrAnState]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append]
Expand All @@ -237,7 +241,8 @@ lemma ι_timeOrder_superCommute_eq_time {φ ψ : 𝓕.CrAnStates}
rw [← ofCrAnList_append]
simp
rw [h1]
have hc : ι ((superCommute (ofCrAnState φ)) (ofCrAnState ψ)) ∈ Subalgebra.center ℂ 𝓕.FieldOpAlgebra := by
have hc : ι ((superCommute (ofCrAnState φ)) (ofCrAnState ψ)) ∈
Subalgebra.center ℂ 𝓕.FieldOpAlgebra := by
apply ι_superCommute_ofCrAnState_ofCrAnState_mem_center
rw [Subalgebra.mem_center_iff] at hc
repeat rw [← mul_assoc]
Expand Down Expand Up @@ -272,26 +277,23 @@ lemma ι_timeOrder_superCommute_eq_time {φ ψ : 𝓕.CrAnStates}
· intro x hx hpx
simp_all [pb, hpx]


lemma ι_timeOrder_superCommute_neq_time {φ ψ : 𝓕.CrAnStates}
(hφψ : ¬ (crAnTimeOrderRel φ ψ ∧ crAnTimeOrderRel ψ φ)) (a b : 𝓕.CrAnAlgebra) :
ι 𝓣ᶠ(a * [ofCrAnState φ, ofCrAnState ψ]ₛca * b) = 0 := by
rw [timeOrder_timeOrder_mid]
have hφψ : ¬ (crAnTimeOrderRel φ ψ) ∨ ¬ (crAnTimeOrderRel ψ φ) := by
exact Decidable.not_and_iff_or_not.mp hφψ
rcases hφψ with hφψ | hφψ
· rw [timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel ]
have ht := IsTotal.total (r := crAnTimeOrderRel) φ ψ
· rw [timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel]
simp_all only [false_and, not_false_eq_true, false_or, mul_zero, zero_mul, map_zero]
simp_all
· rw [superCommute_ofCrAnState_ofCrAnState_symm]
simp only [instCommGroup.eq_1, neg_smul, map_neg, map_smul, mul_neg, Algebra.mul_smul_comm,
neg_mul, Algebra.smul_mul_assoc, neg_eq_zero, smul_eq_zero]
rw [timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel ]
rw [timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel]
simp only [mul_zero, zero_mul, map_zero, or_true]
simp_all


/-!
## Defining normal order for `FiedOpAlgebra`.
Expand Down
8 changes: 4 additions & 4 deletions HepLean/PerturbationTheory/Koszul/KoszulSign.lean
Original file line number Diff line number Diff line change
Expand Up @@ -280,7 +280,7 @@ lemma koszulSign_swap_eq_rel {ψ φ : 𝓕} (h1 : le φ ψ) (h2 : le ψ φ) : (
apply Wick.koszulSignInsert_eq_perm
exact List.Perm.append_left φs (List.Perm.swap ψ φ φs')

lemma koszulSign_eq_rel_eq_stat_append {ψ φ : 𝓕} [IsTrans 𝓕 le] [IsTotal 𝓕 le]
lemma koszulSign_eq_rel_eq_stat_append {ψ φ : 𝓕} [IsTrans 𝓕 le]
(h1 : le φ ψ) (h2 : le ψ φ) (hq : q ψ = q φ) : (φs : List 𝓕) →
koszulSign q le (φ :: ψ :: φs) = koszulSign q le φs := by
intro φs
Expand All @@ -294,7 +294,7 @@ lemma koszulSign_eq_rel_eq_stat_append {ψ φ : 𝓕} [IsTrans 𝓕 le] [IsTotal
rw [koszulSignInsert_eq_rel_eq_stat q le h1 h2 hq]
simp

lemma koszulSign_eq_rel_eq_stat {ψ φ : 𝓕} [IsTrans 𝓕 le] [IsTotal 𝓕 le]
lemma koszulSign_eq_rel_eq_stat {ψ φ : 𝓕} [IsTrans 𝓕 le]
(h1 : le φ ψ) (h2 : le ψ φ) (hq : q ψ = q φ) : (φs' φs : List 𝓕) →
koszulSign q le (φs' ++ φ :: ψ :: φs) = koszulSign q le (φs' ++ φs)
| [], φs => by
Expand Down Expand Up @@ -395,7 +395,7 @@ lemma koszulSign_of_append_eq_insertionSort [IsTotal 𝓕 le] [IsTrans 𝓕 le]
-/

lemma koszulSign_perm_eq_append [IsTotal 𝓕 le] [IsTrans 𝓕 le] (φ : 𝓕) (φs φs' φs2 : List 𝓕)
lemma koszulSign_perm_eq_append [IsTrans 𝓕 le] (φ : 𝓕) (φs φs' φs2 : List 𝓕)
(hp : φs.Perm φs') : (h : ∀ φ' ∈ φs, le φ φ' ∧ le φ' φ) →
koszulSign q le (φs ++ φs2) = koszulSign q le (φs' ++ φs2) := by
let motive (φs φs' : List 𝓕) (hp : φs.Perm φs') : Prop :=
Expand Down Expand Up @@ -423,7 +423,7 @@ lemma koszulSign_perm_eq_append [IsTotal 𝓕 le] [IsTrans 𝓕 le] (φ : 𝓕)
refine h φ' ?_
exact (List.Perm.mem_iff (id (List.Perm.symm h1))).mp hφ

lemma koszulSign_perm_eq [IsTotal 𝓕 le] [IsTrans 𝓕 le] (φ : 𝓕) : (φs1 φs φs' φs2 : List 𝓕) →
lemma koszulSign_perm_eq [IsTrans 𝓕 le] (φ : 𝓕) : (φs1 φs φs' φs2 : List 𝓕) →
(h : ∀ φ' ∈ φs, le φ φ' ∧ le φ' φ) → (hp : φs.Perm φs') →
koszulSign q le (φs1 ++ φs ++ φs2) = koszulSign q le (φs1 ++ φs' ++ φs2)
| [], φs, φs', φs2, h, hp => by
Expand Down
4 changes: 2 additions & 2 deletions HepLean/PerturbationTheory/Koszul/KoszulSignInsert.lean
Original file line number Diff line number Diff line change
Expand Up @@ -247,7 +247,7 @@ lemma koszulSignInsert_of_le_mem (φ0 : 𝓕) : (φs : List 𝓕) → (h : ∀ b
exact h b (List.mem_cons_of_mem _ hb)
· exact h φ1 (List.mem_cons_self _ _)

lemma koszulSignInsert_eq_rel_eq_stat {ψ φ : 𝓕} [IsTotal 𝓕 le] [IsTrans 𝓕 le]
lemma koszulSignInsert_eq_rel_eq_stat {ψ φ : 𝓕} [IsTrans 𝓕 le]
(h1 : le φ ψ) (h2 : le ψ φ) (hq : q ψ = q φ) : (φs : List 𝓕) →
koszulSignInsert q le φ φs = koszulSignInsert q le ψ φs
| [] => by
Expand All @@ -268,7 +268,7 @@ lemma koszulSignInsert_eq_rel_eq_stat {ψ φ : 𝓕} [IsTotal 𝓕 le] [IsTrans
simp only [hr, ↓reduceIte, hψφ']
rw [koszulSignInsert_eq_rel_eq_stat h1 h2 hq φs]

lemma koszulSignInsert_eq_remove_same_stat_append {ψ φ φ' : 𝓕} [IsTotal 𝓕 le] [IsTrans 𝓕 le]
lemma koszulSignInsert_eq_remove_same_stat_append {ψ φ φ' : 𝓕} [IsTrans 𝓕 le]
(h1 : le φ ψ) (h2 : le ψ φ) (hq : q ψ = q φ) : (φs : List 𝓕) →
koszulSignInsert q le φ' (φ :: ψ :: φs) = koszulSignInsert q le φ' φs := by
intro φs
Expand Down

0 comments on commit 32aefb7

Please sign in to comment.