Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Erster Commit #5

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions .idea/biz_analytics_a_starter.iml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

3 changes: 3 additions & 0 deletions environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -20,3 +20,6 @@ dependencies:
- yellowbrick=1.3
- pip:
- streamlit==1.7.0

streamlit~=1.7.0
scipy~=1.5.0
1 change: 1 addition & 0 deletions first_commits/HalloDavidStein7.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
Hallo Welt
266 changes: 266 additions & 0 deletions notebooks/Ergebnisse_für_Piotr.ipynb

Large diffs are not rendered by default.

1,719 changes: 1,719 additions & 0 deletions notebooks/data_clustering.ipynb

Large diffs are not rendered by default.

1,610 changes: 1,610 additions & 0 deletions notebooks/data_modeling_beans.ipynb

Large diffs are not rendered by default.

1,133 changes: 1,133 additions & 0 deletions notebooks/data_overview.ipynb

Large diffs are not rendered by default.

1,538 changes: 1,538 additions & 0 deletions notebooks/data_penguin_clustering.ipynb

Large diffs are not rendered by default.

634 changes: 634 additions & 0 deletions notebooks/spaghetti_classification.ipynb

Large diffs are not rendered by default.

1 change: 1 addition & 0 deletions src/App2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
import streamlit as st
38 changes: 38 additions & 0 deletions src/app/App.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
import streamlit as st

st.title('Vorhersage der deutschen Co2 Emissionen')

"Autor: David Steinhäuser (https://github.com/DavidStein7)"

from scipy.stats import linregress
st.subheader("Vorhersage")
years = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]
emissions_per_year = [10.3, 10.0, 10.1, 10.2, 9.7, 9.7, 9.7, 9.5, 9.1, 8.5, 7.7]

regression_result = linregress(years, emissions_per_year)
scipy_slope = regression_result.slope
scipy_intercept = regression_result.intercept
def scipy_model(desired_year):
model_result = scipy_slope * desired_year + scipy_intercept
return model_result
desired_year = st.number_input('Jahr', value=2022)

prediction = scipy_model(desired_year)
prediction_rounded = round(prediction, 2)

"Die Vorhersage der Emissionen für das ausgewählte Jahr ist:"

st.write(prediction_rounded)

"Tonnen pro Kopf pro Jahr"

st.subheader("Über das Modell und die Daten")

"Das Modell ist ein lineares Regressionsmodell auf Grundlage von Daen von 2010 bis 2020."
"Es steht ein Datenpunkt pro Jahr zur Verfügung"

"Die Daten stammen aus den folgenden Quellen:"

"- Global Carbon Project. (2021). Supplemental data of Global Carbon Project 2021 (1.0) [Data set]. Global Carbon Project. https://doi.org/10.18160/gcp-2021"
"- Andrew, Robbie M., & Peters, Glen P. (2021). The Global Carbon Project's fossil CO2 emissions dataset [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5569235"
#%%
48 changes: 48 additions & 0 deletions src/app/OwnApp1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
import pandas as pd
import streamlit as st

st.title('Vorhersage des Anteils der erneuerbaren Energien am gesamten Energieverbrauch in Deutschland')

"Autor: David Steinhäuser (https://github.com/DavidStein7)"

from scipy.stats import linregress

st.subheader("Vorhersage")
years = [2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019]
r_energy = [10.72, 11.61, 12.54, 13.64, 13.63, 14.02, 14.55, 14.24, 15.22, 16.12, 17.17]


regression_result = linregress(years, r_energy)
scipy_slope = regression_result.slope
scipy_intercept = regression_result.intercept
def scipy_model(desired_year):
model_result = scipy_slope * desired_year + scipy_intercept
return model_result
desired_year = st.number_input('Jahr', value = 2022)

prediction = scipy_model(desired_year)
prediction_rounded = round(prediction, 2)

"Die Vorhersage des Anteils der erneuerbaren Energien für das ausgewählte Jahr ist"

st.write(prediction_rounded,"%")

"des gesamten Energieverbrauchs."

st.subheader("Genutzte Datenpunkte:")
chart_data=pd.DataFrame(r_energy,years)
st.bar_chart(chart_data)

clicked = st.button("Drück mich! :)",help="Balloons")
if clicked:
st.balloons()

st.subheader("Über das Modell und Daten")

"Das Modell ist ein lineares Regressionsmodell auf Grundlage von Daten von 2009 bis 2019."
"Es steht ein Datenpunkt pro Jahr zur Verfügung"

"Die Daten stammen aus den folgenden Quellen:"
"- IEA. (2021). World Energy Balances."
"- UN Statistics Division. (2021). Energy Balances."
"- https://unstats.un.org/sdgs/dataportal/countryprofiles/DEU#goal-7"
53 changes: 53 additions & 0 deletions src/app/OwnApp2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
import pandas as pd
import streamlit as st

st.title('Number of Nuclear Warheads - USA vs Russia')

"Autor: David Steinhäuser (https://github.com/DavidStein7)"

from scipy.stats import linregress

st.subheader("Vorhersage 1")
years = [2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022]
warheadsR = [12188, 11152, 10114, 9076, 8038, 7000, 6643, 6286, 5929, 5527, 5215, 4858, 4750, 4650, 4600, 4500, 4490, 4300, 4350, 4330, 4310, 4495, 4477]
warheadsU = [10577, 10526, 10457, 10027, 8570, 8360, 7853, 5709, 5273, 5113, 5066, 4897, 4881, 4804, 4717, 4571, 4018, 3822, 3785, 3805, 3750, 3708, 3708]

regression_result = linregress(years, warheadsR)
scipy_slope = regression_result.slope
scipy_intercept = regression_result.intercept
def scipy_model(desired_year):
model_result = scipy_slope * desired_year + scipy_intercept
return model_result
desired_year = st.number_input('Jahr', value = 2022)

prediction = scipy_model(desired_year)
prediction_rounded = round(prediction, 2)

"Die Vorhersage"

st.write(prediction_rounded)

"Lineare Vorhersage"
slope = (warheadsR[22]-warheadsR[0])/(years[22]-years[0])
intercept = warheadsR[0]-(slope*years[0])

def model(desired_year):
model_result2 = slope * desired_year + intercept
return model_result2

st.write(model(desired_year))

"Daten"

st.write(warheadsR[22])

st.success("nice!")

st.subheader("Data points used:")
chart_data=pd.DataFrame(warheadsR,years)
st.bar_chart(chart_data)

clicked = st.button("Click me",help="Balloons")
if clicked:
st.balloons()

95 changes: 95 additions & 0 deletions src/hello_world.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
print(5+5)
#%%
print(5*2)
#%%
print(5*3)
#%%
multiplier = 2

result = multiplier * -3
print(result)
#%%
recent_years = [2020, 2021, 2022]

print(recent_years[1])
#%%
for year in recent_years:
print(year)
#%%

#%%

#%%
for year in recent_years:
print(year)
#%%
for number in range (10):
print(number)
#%%
years = [2020, 2021]
emissions_per_year = [10.3 , 7.7]

slope = (emissions_per_year[1]-emissions_per_year[0])/years[1]-years[0])
#%%
years = [2020, 2021]
emissions_per_year = [10.3 , 7.7]

slope = (emissions_per_year[1]-emissions_per_year[0])/years[1]-years[0]

#%%
years = [2010, 2020]
emissions_per_year = [10.3 , 7.7]

slope = (emissions_per_year[1]-emissions_per_year[0])/(years[1]-years[0])
print(slope)
#%%
years = [2010, 2020]
emissions_per_year = [10.3 , 7.7]

slope = (emissions_per_year[1]-emissions_per_year[0])/(years[1]-years[0])
intercept = emissions_per_year[0]-(slope*years[0])
print(intercept)
#%%
years = [2010, 2020]
emissions_per_year = [10.3 , 7.7]

slope = (emissions_per_year[1]-emissions_per_year[0])/(years[1]-years[0])
intercept = emissions_per_year[0]-(slope*years[0])

def model(desired_year):
model_result = slope * desired_year + intercept
return model_result

emissions_in_2022 = model(2022)
print(emissions_in_2022)
#%%
# Modell mit SciPy
years = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]
emissions_per_year = [10.3, 10.0, 10.1, 10.2, 9.7, 9.7, 9.7, 9.5, 9.1, 8.5, 7.7]
from scipy.stats import linregress
regression_result = linregress(years, emissions_per_year)
scipy_slope = regression_result.slope
scipy_intercept = regression_result.intercept
def scipy_model(desired_year):
model_result = scipy_slope * desired_year + scipy_intercept
return model_result
emissions_in_2022_scipy = scipy_model(2022)
print(emissions_in_2022_scipy)
#%%
model_results = []
scipy_model_results = []

for year in years:
model_result = model(year)
scipy_model_result = scipy_model(year)

model_results.append(model_result)
scipy_model_results.append(scipy_model_result)

print(emissions_per_year)
print(model_results)
print(scipy_model_results)

#%%

#%%